(3.236.175.108) 您好!臺灣時間:2021/03/01 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖慶麟
論文名稱:時延系統強健分析與設計
指導教授:莊堯棠
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:62
中文關鍵詞:具參數不確定性之離散時延系統具參數不確定性之連續時延系統D-穩定度強健控制
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文,主要是針對具參數不確定性的時間延遲系統,做一個有系統的研究。由於實際的系統,必定會因為外界環境的變化,或者是無法避免的干擾,以及系統數學模式簡化所導致的誤差,均會使得系統的參數在一定範圍內變動。所以,對於這些不確定變數的強健穩定,是一個良好系統所不可或缺的。除了參數的不確定性外,另一個值得注意的問題即是系統時間的延遲,在實際系統中,狀態的傳輸需要時間,因此大部分的實際系統也必定會發生時間延遲的現象。所以在此我們即是同時針對這兩個問題做討論,看看系統在加入參數不確定性和時延時的強健穩定度判斷。
我們在這本論文中主要討論的包括具參數不確定離散型及連續型時延系統的穩定度分析,我們把先前文獻的理論加以擴展及應用,以更能確保系統穩定度判斷的準確性。接著並利用這些結果及定義最佳化指標做狀態回授控制器的設計,使系統多項式所描繪的曲線遠離原點,以增加系統的相對穩定度。這些重要的問題皆在我們所討論的範圍內。

摘要…………………………………………………………………… I
目錄…………………………………………………………………… II
圖目錄………………………………………………………………… IV
第一章 緒論…………………………………………………………… 1
1-1. 研究動機………………………………………………………… 1
1-2. 文獻回顧………………………………………………………… 2
1-3. 系統描述………………………………………………………… 3
1-4. 論文架構………………………………………………………… 4
第二章 具參數不確定性之離散時延系統的D-stability分析……… 6
2-1. 簡介……………………………………………………………… 6
2-2. 問題描述………………………………………………………… 7
2-3. 主要結果………………………………………………………… 9
2-4. 例題……………………………………………………………… 15
2-5. 結論……………………………………………………………… 20
第三章 具參數不確定性之連續時延系統的穩定度分析…………… 22
3-1. 簡介……………………………………………………………… 22
3-2. 問題描述………………………………………………………… 22
3-3. 主要結果………………………………………………………… 24
3-4. 例題……………………………………………………………… 30
3-5. 結論……………………………………………………………… 33
第四章 具參數不確定性時延系統狀態回授控制器設計…………… 35
4-1. 簡介……………………………………………………………… 35
4-2. 問題描述………………………………………………………… 35
4-3. 主要結果………………………………………………………… 38
4-4. 例題……………………………………………………………… 41
4-5. 結論……………………………………………………………… 51
第五章 結論…………………………………………………………… 52
參考文獻………………………………………………………………… 54
附錄……………………………………………………………………… 60

[1] V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,” Differential’nye Uravneniya, vol. 14, no. 11, pp. 2086-2088, 1978 (in Russian); English translation Diff. Eqs., vol. 14, pp. 1483-1485, 1979.
[2] H. Chapellat and S. P. Bhattacharyya, “A generalization of Kharitonov’s theorem: Robust stability of interval plants,” IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 306-311, 1989.
[3] H. Kokame, and T. Mori, “A Kharitonov-like theorem for interval polynomial matrices,” Systems & Control Letters, 16, pp. 107-116, 1991.
[4] M. Fu, “A class of weak Kharitonov regions for robust stability of linear uncertain systems,” IEEE Trans. Automat. Contr., vol. 36, pp. 975-978, 1991.
[5] T. E. Djaferis, “To stabilize a k real parameter affine family of plants it suffices to simultaneously stabilize polynomials,” Syst. Contr. Lett., vol. 16, no. 3, pp. 187-193, 1991.
[6] M. Fu, A. W. Olbrot, and M. P. Polis, “The edge theorem and graphical tests for robust stability of neutral time-delay systems,” Automatica, vol. 27, no. 4, pp. 739-741, 1991.
[7] H. Chapellat, M. Dahleh, and S. P. Bhattacharyya, “Robust Stability Manifolds for Multilinear Interval Systems,” IEEE Trans. Automat. Contr., vol. 38, no. 2, pp. 314-318, 1993.
[8] Y. C. Soh, and Y. K. Foo, “Nonconvex Kharitonov regions,” IEEE Trans. Automat. Contr., vol. 38, no. 7, pp. 1158-1159, 1993.
[9] T. E. Djaferis, “To stabilize an interval plant family it suffices to simultaneously stabilize sixty-four polynomials,” IEEE Trans. Automat. Contr., vol. 38, no. 5, pp. 760-764, 1993.
[10] V. L. Kharitonov and A. P. Zhabko, “Robust stability of time-delay systems,” IEEE Trans. Automat. Contr., vol. 39, no. 12, pp. 2388-2397, 1994.
[11] R. Hernandez, and S. Dormido, ”On the sixty-four polynomials of Djaferis to stabilize an interval plant,” IEEE Trans. Automat. Contr., vol. 40, no. 12, pp. 2122-2127, 1995.
[12] V. L. Kharitonov, and A. P. Zhabko, “Robust stability of time-delay systems,” IEEE Trans. Automat. Contr., vol. 39, no.12, pp. 2388-2397, 1994.
[13] Y.-T. Juang, Z.-C. Hong, and Y.-T. Wang, “Lyapunov approach to robust pole-assignment analysis,” Int. J. Contr., vol. 49, no. 3, pp. 921-927, 1989.
[14] Y.-T. Juang, Z.-C. Hong, and Y.-T. Wang, “Pole-assignment for uncertain systems with structured perturbations,” IEEE Trans. Circuits and Systems, vol. 37, no. 1, pp. 107-110, 1990.
[15] Y. T. Juang, “Robust stability and robust pole assignment of linear systems with structured uncertainty,” IEEE Trans. Automat. Contr., vol. 36, no. 5, pp. 635-637, 1991.
[16] Y.-T. Juang, “Eigenvalue assignment robustness for systems with structured perturbations,” IEEE Trans. Automat. Contr., vol. 38, no. 11, pp. 1697-1700, 1993.
[17] Y.-T. Juang and W.-J. Shyu, “Stability of time-delay systems, ”Control-Theory and Advanced Technology , vol.10 , No.4 , pp. 2099-2107,1995.
[18] J. Kogan, and A. Leizarowitz, “Frequency domain criterion for robust stability of interval time-delay systems,” Automatica, vol. 31, no. 3, pp. 463-469, 1995.
[19] C.-H. Lee, “D-Stability of continuous time-delay systems subjected to a class of highly structured perturbations,” IEEE Trans. Automat. Contr., vol. 40, no. 10, pp. 1803-1807, 1995.
[20] G. Garcia, and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Trans. Automat. Contr., vol. 40, no. 1, pp. 184-190, 1995.
[21] G. Garcia, J. Daafouz, and J. Bernussou, “Output feedback disk pole assignment for systems with positive real uncertainty,” IEEE Trans. Automat. Contr., vol. 41, no. 9, pp. 1385-1391, 1996.
[22] M. E. Halpern, R. J. Evans, and R. D. Hill, “Optimal pole placement design for SISO discrete-time systems,” IEEE Trans. Automat. Contr., vol. 41, no. 9, pp. 1322-1326, 1996.
[23] G. Garcia, J. Bernussou, and P. Camozzi, “Disk pole location for uncertain systems through convex optimization,” Int. J. Robust Nonlinear Contr., vol. 6, pp. 189-199, 1996.
[24] J.-T. Tsay, P.-L. Liu, and T.-J. Su, “Robust stability for perturbed large-scale time-delay systems,” IEE Proc.-Control Theory Appl., vol. 143, no. 3, pp. 233-236, 1996.
[25] B. Xu, “On delay-independent stability of large-scale systems with time delays,” IEEE Trans. Automat. Contr., vol. 40, no. 5, pp. 930-933, 1995.
[26] Z.-H. Guan, Y.-Q. Liu, and X.-C. Wen, “Decentralized stabilization of singular and time-delay large-scale control systems with impulsive solutions,” IEEE Trans. Automat. Contr., vol. 40, no. 8, pp. 1437-1441, 1995.
[27] Feng-Hsiag Hsiao , Shing-Tai Pan , and Ching-Cheng Teng , “Optimal D-stable control for discrete multiple time-delay systems with parametric uncertainties,” J. Franklin Inst., vol.334B, No.6, pp. 991-1000, 1996.
[28] Fan-Chu kung, Chien-Hua Lee and Tzuu-Hseng S. Li, “Decentralized robust control design for large-scale time-delay systems with time-varying uncertainties,” JSME International Journal, vol.39, No.3, 1996.
[29] Feng-Hsiag Hsiao , Shing-Tai Pan , and Ching-Cheng Teng ,”Robust controller design for discrete uncertain multiple time-delay systems,” Transactions of the ASME , vol.119, pp. 122-127, 1997.
[30] Feng-Hsiag Hsiao , Shing-Tai Pan , and Ching-Cheng Teng ,”D-stability bound analysis for discrete multiparameter singularly perturbed systems,” IEEE Trans. on Circuits and Systems, vol.44, No. 4, pp. 347-351, 1997.
[31] Chien-Hua Lee and Tsung-Lieh Hsien,” Exponential stability of discrete time uncertain systems with time-varying delay,” J. Franklin Inst., vol.332B, No.4, pp. 479-489, 1995.
[32] Chien-Hua Lee , Tzuu-Hseng S. Li and Fan-Chu kung, ”Instability analysis and unstable roots region estimate of time-delay systems with highly structured uncertainties,” Transactions of the ASME , vol.22, pp. 225-233, 1996.
[33] Tzuu-Hseng S. Li, Chien-Hua Lee and Fan-Chu kung, ”Disk stability analysis of continuous and discrete interval systems,” Transactions of the ASME , vol.23, pp. 169-176, 1996.
[34] Chien-Hua Lee and Tsung-Lieh Hsien, ”Delay-independent stability criteria for discrete uncertain large-scale systems with time delay,” J. Franklin Inst., vol.334B, No.1, pp. 155-166, 1997.
[35] Chien-Hua Lee and Tsung-Lieh Hsien, “ New sufficient conditions for the stability of continuous and discrete time-delay interval systems,” J. Franklin Inst., vol.334B, No.2, pp. 233-240, 1997.
[36] Chien-Hua Lee and Fan-Chu kung, “Upper and lower matrix bounds of the solutions for the continuous and discrete Lyapunov equations,” J. Franklin Inst., vol.334B, No.4, pp. 539-546, 1997.
[37] S.D.Brierley, J.N.Chiasson, E.B.Lee and S.H.Zak, “On stability independent of delay for linear systems,” IEEE Trans. Automat. Contr., vol. AC-27, No. 1, pp. 252-254, 1982.
[38] Chen-Huei Hsieh, “Robust D-stability analysis of linear uncertain discrete time-delay systems,” Journal of the Chinese Institute of Engineers, vol.21, No.6, pp. 769-773, 1998.
[39] Yeong-Jeu Sun, Jer-Guang Hsieh and Hong-Chin Yang, “On the stability of uncertain systems with multiple time-varying delays,” IEEE Trans. Automat. Contr., vol. 42, No. 1, pp. 101-105, 1997.
[40] Lihua Xie and Yeng Chai Soh, “Robust control of linear systems with generalized positive real uncertainty,” Automatica, vol.33, No.5, pp. 963-967, 1997.
[41] Kanh T. Ngo and Kelvin T. Erickson, “Stability of discrete-time matrix polynomials,” IEEE Trans. Automat. Contr., vol. 42, No. 4, pp. 538-542, 1997.
[42] Haiyan Wang and Bijoy K. Ghosh, “A new robust control for a class of uncertain discrete-time systems,” IEEE Trans. Automat. Contr., vol. 42, No. 9, pp. 1252-1254, 1997.
[43] Xi Li and Carlos E. de Souza, “Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach,” IEEE Trans. Automat. Contr., vol. 42, No. 8, pp. 1144-1148, 1997.
[44] Hmamed, A., “Futurer results on the delay-independent asymptotic stability of linear systems,” International Journal of Systems Science, vol.22, pp. 1127-1132, 1991.
[45] Lee, C.H., T.H.Li and F.C.Kung, “New results for the stability of uncertain time-delay systems,” International Journal of Systems Science, vol.26, pp. 999-1004, 1995.
[46] E.W. Kamen, “On the relationship between zero criteria for two-variable polynomials and asymptotic stability of differential equations,” IEEE Trans. Automat. Contr., vol. AC-25, no. 5, pp. 983-984, 1980.
[47] S. P. Bhattacharyya, H. Chapellat and L. H. Keel, “Robust Control The Parametric Approach,” A Simon & Schuster Company, 1995.
[48] B. Ross Barmish, “New Tolls for Robustness of Linear Systems,” Macmillan Publishing Company, 1994.
[49] 林俊良, “強健控制系統分析與設計,” 國立編譯館, 1997.
[50] 江泰利, “時延系統強健控制,” 碩士論文, 國立中央大學電機工程研究所, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔