[1] V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,” Differential’nye Uravneniya, vol. 14, no. 11, pp. 2086-2088, 1978 (in Russian); English translation Diff. Eqs., vol. 14, pp. 1483-1485, 1979.
[2] H. Chapellat and S. P. Bhattacharyya, “A generalization of Kharitonov’s theorem: Robust stability of interval plants,” IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 306-311, 1989.
[3] H. Kokame, and T. Mori, “A Kharitonov-like theorem for interval polynomial matrices,” Systems & Control Letters, 16, pp. 107-116, 1991.
[4] M. Fu, “A class of weak Kharitonov regions for robust stability of linear uncertain systems,” IEEE Trans. Automat. Contr., vol. 36, pp. 975-978, 1991.
[5] T. E. Djaferis, “To stabilize a k real parameter affine family of plants it suffices to simultaneously stabilize polynomials,” Syst. Contr. Lett., vol. 16, no. 3, pp. 187-193, 1991.
[6] M. Fu, A. W. Olbrot, and M. P. Polis, “The edge theorem and graphical tests for robust stability of neutral time-delay systems,” Automatica, vol. 27, no. 4, pp. 739-741, 1991.
[7] H. Chapellat, M. Dahleh, and S. P. Bhattacharyya, “Robust Stability Manifolds for Multilinear Interval Systems,” IEEE Trans. Automat. Contr., vol. 38, no. 2, pp. 314-318, 1993.
[8] Y. C. Soh, and Y. K. Foo, “Nonconvex Kharitonov regions,” IEEE Trans. Automat. Contr., vol. 38, no. 7, pp. 1158-1159, 1993.
[9] T. E. Djaferis, “To stabilize an interval plant family it suffices to simultaneously stabilize sixty-four polynomials,” IEEE Trans. Automat. Contr., vol. 38, no. 5, pp. 760-764, 1993.
[10] V. L. Kharitonov and A. P. Zhabko, “Robust stability of time-delay systems,” IEEE Trans. Automat. Contr., vol. 39, no. 12, pp. 2388-2397, 1994.
[11] R. Hernandez, and S. Dormido, ”On the sixty-four polynomials of Djaferis to stabilize an interval plant,” IEEE Trans. Automat. Contr., vol. 40, no. 12, pp. 2122-2127, 1995.
[12] V. L. Kharitonov, and A. P. Zhabko, “Robust stability of time-delay systems,” IEEE Trans. Automat. Contr., vol. 39, no.12, pp. 2388-2397, 1994.
[13] Y.-T. Juang, Z.-C. Hong, and Y.-T. Wang, “Lyapunov approach to robust pole-assignment analysis,” Int. J. Contr., vol. 49, no. 3, pp. 921-927, 1989.
[14] Y.-T. Juang, Z.-C. Hong, and Y.-T. Wang, “Pole-assignment for uncertain systems with structured perturbations,” IEEE Trans. Circuits and Systems, vol. 37, no. 1, pp. 107-110, 1990.
[15] Y. T. Juang, “Robust stability and robust pole assignment of linear systems with structured uncertainty,” IEEE Trans. Automat. Contr., vol. 36, no. 5, pp. 635-637, 1991.
[16] Y.-T. Juang, “Eigenvalue assignment robustness for systems with structured perturbations,” IEEE Trans. Automat. Contr., vol. 38, no. 11, pp. 1697-1700, 1993.
[17] Y.-T. Juang and W.-J. Shyu, “Stability of time-delay systems, ”Control-Theory and Advanced Technology , vol.10 , No.4 , pp. 2099-2107,1995.
[18] J. Kogan, and A. Leizarowitz, “Frequency domain criterion for robust stability of interval time-delay systems,” Automatica, vol. 31, no. 3, pp. 463-469, 1995.
[19] C.-H. Lee, “D-Stability of continuous time-delay systems subjected to a class of highly structured perturbations,” IEEE Trans. Automat. Contr., vol. 40, no. 10, pp. 1803-1807, 1995.
[20] G. Garcia, and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Trans. Automat. Contr., vol. 40, no. 1, pp. 184-190, 1995.
[21] G. Garcia, J. Daafouz, and J. Bernussou, “Output feedback disk pole assignment for systems with positive real uncertainty,” IEEE Trans. Automat. Contr., vol. 41, no. 9, pp. 1385-1391, 1996.
[22] M. E. Halpern, R. J. Evans, and R. D. Hill, “Optimal pole placement design for SISO discrete-time systems,” IEEE Trans. Automat. Contr., vol. 41, no. 9, pp. 1322-1326, 1996.
[23] G. Garcia, J. Bernussou, and P. Camozzi, “Disk pole location for uncertain systems through convex optimization,” Int. J. Robust Nonlinear Contr., vol. 6, pp. 189-199, 1996.
[24] J.-T. Tsay, P.-L. Liu, and T.-J. Su, “Robust stability for perturbed large-scale time-delay systems,” IEE Proc.-Control Theory Appl., vol. 143, no. 3, pp. 233-236, 1996.
[25] B. Xu, “On delay-independent stability of large-scale systems with time delays,” IEEE Trans. Automat. Contr., vol. 40, no. 5, pp. 930-933, 1995.
[26] Z.-H. Guan, Y.-Q. Liu, and X.-C. Wen, “Decentralized stabilization of singular and time-delay large-scale control systems with impulsive solutions,” IEEE Trans. Automat. Contr., vol. 40, no. 8, pp. 1437-1441, 1995.
[27] Feng-Hsiag Hsiao , Shing-Tai Pan , and Ching-Cheng Teng , “Optimal D-stable control for discrete multiple time-delay systems with parametric uncertainties,” J. Franklin Inst., vol.334B, No.6, pp. 991-1000, 1996.
[28] Fan-Chu kung, Chien-Hua Lee and Tzuu-Hseng S. Li, “Decentralized robust control design for large-scale time-delay systems with time-varying uncertainties,” JSME International Journal, vol.39, No.3, 1996.
[29] Feng-Hsiag Hsiao , Shing-Tai Pan , and Ching-Cheng Teng ,”Robust controller design for discrete uncertain multiple time-delay systems,” Transactions of the ASME , vol.119, pp. 122-127, 1997.
[30] Feng-Hsiag Hsiao , Shing-Tai Pan , and Ching-Cheng Teng ,”D-stability bound analysis for discrete multiparameter singularly perturbed systems,” IEEE Trans. on Circuits and Systems, vol.44, No. 4, pp. 347-351, 1997.
[31] Chien-Hua Lee and Tsung-Lieh Hsien,” Exponential stability of discrete time uncertain systems with time-varying delay,” J. Franklin Inst., vol.332B, No.4, pp. 479-489, 1995.
[32] Chien-Hua Lee , Tzuu-Hseng S. Li and Fan-Chu kung, ”Instability analysis and unstable roots region estimate of time-delay systems with highly structured uncertainties,” Transactions of the ASME , vol.22, pp. 225-233, 1996.
[33] Tzuu-Hseng S. Li, Chien-Hua Lee and Fan-Chu kung, ”Disk stability analysis of continuous and discrete interval systems,” Transactions of the ASME , vol.23, pp. 169-176, 1996.
[34] Chien-Hua Lee and Tsung-Lieh Hsien, ”Delay-independent stability criteria for discrete uncertain large-scale systems with time delay,” J. Franklin Inst., vol.334B, No.1, pp. 155-166, 1997.
[35] Chien-Hua Lee and Tsung-Lieh Hsien, “ New sufficient conditions for the stability of continuous and discrete time-delay interval systems,” J. Franklin Inst., vol.334B, No.2, pp. 233-240, 1997.
[36] Chien-Hua Lee and Fan-Chu kung, “Upper and lower matrix bounds of the solutions for the continuous and discrete Lyapunov equations,” J. Franklin Inst., vol.334B, No.4, pp. 539-546, 1997.
[37] S.D.Brierley, J.N.Chiasson, E.B.Lee and S.H.Zak, “On stability independent of delay for linear systems,” IEEE Trans. Automat. Contr., vol. AC-27, No. 1, pp. 252-254, 1982.
[38] Chen-Huei Hsieh, “Robust D-stability analysis of linear uncertain discrete time-delay systems,” Journal of the Chinese Institute of Engineers, vol.21, No.6, pp. 769-773, 1998.
[39] Yeong-Jeu Sun, Jer-Guang Hsieh and Hong-Chin Yang, “On the stability of uncertain systems with multiple time-varying delays,” IEEE Trans. Automat. Contr., vol. 42, No. 1, pp. 101-105, 1997.
[40] Lihua Xie and Yeng Chai Soh, “Robust control of linear systems with generalized positive real uncertainty,” Automatica, vol.33, No.5, pp. 963-967, 1997.
[41] Kanh T. Ngo and Kelvin T. Erickson, “Stability of discrete-time matrix polynomials,” IEEE Trans. Automat. Contr., vol. 42, No. 4, pp. 538-542, 1997.
[42] Haiyan Wang and Bijoy K. Ghosh, “A new robust control for a class of uncertain discrete-time systems,” IEEE Trans. Automat. Contr., vol. 42, No. 9, pp. 1252-1254, 1997.
[43] Xi Li and Carlos E. de Souza, “Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach,” IEEE Trans. Automat. Contr., vol. 42, No. 8, pp. 1144-1148, 1997.
[44] Hmamed, A., “Futurer results on the delay-independent asymptotic stability of linear systems,” International Journal of Systems Science, vol.22, pp. 1127-1132, 1991.
[45] Lee, C.H., T.H.Li and F.C.Kung, “New results for the stability of uncertain time-delay systems,” International Journal of Systems Science, vol.26, pp. 999-1004, 1995.
[46] E.W. Kamen, “On the relationship between zero criteria for two-variable polynomials and asymptotic stability of differential equations,” IEEE Trans. Automat. Contr., vol. AC-25, no. 5, pp. 983-984, 1980.
[47] S. P. Bhattacharyya, H. Chapellat and L. H. Keel, “Robust Control The Parametric Approach,” A Simon & Schuster Company, 1995.
[48] B. Ross Barmish, “New Tolls for Robustness of Linear Systems,” Macmillan Publishing Company, 1994.
[49] 林俊良, “強健控制系統分析與設計,” 國立編譯館, 1997.
[50] 江泰利, “時延系統強健控制,” 碩士論文, 國立中央大學電機工程研究所, 1997.