跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐明光
研究生(外文):Ming Kung Hsh
論文名稱:大面積矽偵測器的寄生電容與低漏電流製程之研究
論文名稱(外文):Studies on Parasitic Capacitances and Reducing Leakage Current of Large-Area Silicon Detectors
指導教授:洪志旺
指導教授(外文):Jyh-Wong Hong
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:79
中文關鍵詞:矽偵測器寄生電容漏電流防護圈
外文關鍵詞:silicon detectorSPDONOparasitic capacitanceleakage currentguard ringCMSSSD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先研製大面積單面具複晶矽偏壓電阻之交流耦合矽帶電粒子偵測器,且採用多層結構(Oxide-Nitride-Oxide)的介電質取代傳統的二氧化矽充當交流耦合電容的介電質,以提高崩潰電壓及製造良率,降低針孔(pinhole)密度,並使元件能通過高溫高溼的環境測試。本矽偵測器採用雙層金屬引線,以高阻值 [111] 方向之四吋晶片為基板。其製程分為九個大步驟,共需六道光罩。
我們也利用test keys量測與DEVICI模擬,成功找出本偵測器各寄生電容的近似值。另外,各輸出通道的電容值也被量測出來。配合估計出的各寄生電容值,可以得知寄生電容之間的關係,並可確認本矽偵測器在金屬導線方面的設計能獲得較高的訊雜比。
再者,我們探討矽偵測器低漏電流的製程,利用不同的P+ 型摻雜濃度與擴散深度,及絕緣層製作元件並比較其特性。實驗結果簡述如下:
1. P+型摻雜濃度對於漏電流只有在低偏壓下時稍有影響。在高偏壓情形時,其影響並不顯著。
2. P+型摻雜擴散深度對於漏電流大小及崩潰電壓具有顯著的影響。較深的擴散深度可使漏電流降低並減少崩潰現象發生。
3. 由於熱應力的影響,絕緣層也會提高漏電流。實驗發現,將二氧化矽絕緣層蝕刻去除後的樣品具有較小的漏電流與較少的崩潰現象。
另外,防護圈 (guard ring) 結構也被採用來降低漏電流。防護圈能夠有效降低接面轉角處的電場,因而獲得較低的漏電流。
本大面積交流耦合矽偵測器曾多次在歐洲粒子加速器中心進行測試,結果顯示其有極高的訊雜比,且解析度也十分良好。

Large-area single-sided silicon detectors (silicon pad detector and silicon strip detector, SPD&SSD) with coupling capacitors and polysilicon bias resistors had been designed and fabricated. The parasitic capacitors in a silicon detector were investigated. It was found that the overall capacitance at the readout terminal of a SPD functional channel was contributed mainly by the parasitic capacitance due to IMD (inter-metal dielectric) between the signal line (metal-2) and metal-1 pad. So, the thickness and dielectric constant of IMD should be properly selected to reduce this parasitic capacitance. Also, as compared with the result of a previous study, the obtained SPD had a lower and uniform overall capacitance at the readout terminal, and hence a higher S/N ratio.
In the studies to reduce the leakage current of a CMS (Compact Muon Solenoid), it was found that a higher p+ implantation dosage could only reduce slightly the detector leakage current in lower-voltage range. On the other hand, the deeper p+-strip diffusion benefited the leakage-current reduction significantly, but a deeper diffusion needed a longer high-temperature process time. Also, the dielectric layer on the p+-strip increased the detector leakage current obviously, possibly, due to thermal stress.
Besides, a single guard ring was also adapted to reduce the leakage current of a silicon detector. The electric field at the corners of the junction could be reduced effectively by the presence of the guard ring.

CONTENTS
ABSTRACT III
TABLE CAPTIONS IV
FIGURE CAPTIONS V
Chapter 1 INTRODUCTION 1
Chapter 2 DESIGN AND PROCESS 4
2.1 Fundamental Considerations 4
2.2 Design 11
2.3 Fabrication Processes 13
Chapter 3 STUDY ON PARASITIC CAPACITORS 25
3.1 Parasitic Capacitor 25
3.2 Test-Key Measurements 26
3.3 Simulation 27
3.4 Discussion 29
3.5 Summaries 34
Chapter 4 METHODS TO REDUCE LEAKAGE CURRENT 44
4.1 CMS (Compact Muon Solenoid) 44
4.2 Experiments and Measurement 45
4.3 P+ Implantation Dosage 46
4.4 P+ Diffusion Depth 49
4.5 Dielectric on Strips 52
4.6 Guard Ring 54
4.7 Summaries 56
Chapter 5 CONCLUSIONS 72
REFERENCES 74

REFERENCES
[1] A.H. Walenta,“Principles and New Development of Semiconductor Radiation Detectors”, Nuclear Instruments and Methods in Physics Research A253, pp.558-571, 1987.
[2] G.F. Knoll, “Radiation Detection and Measurement”, 2nd ed., John Wiley & Sons, Inc., New York, USA, 1989.
[3] S.M. Sze, “Semiconductor Sensors”, John Wiley & Sons, Inc., New York, USA, 1994.
[4] E. Gatti and P. Pehak, “Semiconductor Drift Chamber - an Application of a Novel Charge Transport Scheme”, IEEE Trans. on Electron Devices, ED-29, p.1388, 1982; Proc. 2nd Pisa Meeting on Advanced Detectors, Grosseto, Italy, in Nuclear Instruments and Methods in Physics Research 225, pp.608-614, 1984.
[5] E. Gatti, P. Rehak, and J. T. Walton, “Silicon Drift Chamber First Results and Optimum Processing of Signals”, Nuclear Instruments and Methods in Physics Research 226, pp.129-141, 1984.
[6] L. Struder, P. Holl, G. Lutz, and J. Kemmer, “Device Modeling of Fully Depletable CCDs”, Nuclear Instruments and Methods in Physics Research A253, pp.386-392, 1987.
[7] V. Radeka, P. Rehak, S. Rescia, E. Gatti, A. Longoni, M. Sampietro, G. Bertuccio, P. Holl, L. Struder, and J. Kemmer, “Implanted Silicon JFET on Completely Depleted High-Resistivity Devices”, IEEE Electron Device Letters, Vol. 10, pp.91-93, 1989.
[8] J. Kemmer and G. Lutz, “New Structures for Position Sensitive Semiconductor Detectors”, Nuclear Instruments and Methods in Physics Research A273, pp.588-598, 1988.
[9] H.Becker, T.Boulos, P. Cattaneo, H. Dietl, D. Hauff,E. Lange, G. Lutz, H. G. Meser, A.S. Schwartz, R. Settles, L. Struder, J. Kemmrr, U. Prechtel, T. Ziemann, and W. Buttler, “New Developments in Double Sided Strip Detectors”, IEEE Trans. on NUCLEAR SCIENCE, Vol. 37, pp.101-106, 1990.
[10] S.M. Sze, “Physics of Semiconductor Devices”, John Wiley & Sons, Inc., New York, USA, 1981.
[11] Warner Ten Kate, “The Silicon Microstrip Detector”. (a copy of transparency)
[12] B. Hyams, U. Koetz, E. Belau, R. Klanner, G. Lutz, E. Neugebauer, A. Wylie and J. Kemmcr, “A Silicon Counter Telescope to Study Short-lived Particles in High-energy Hadronic Interactions”, Nuclear Instruments and Methods in Physics Research 205, pp.99-105, 1983.
[13] M. Campanella,N. Croitoru, F. Groppi, F. Lemeilleur, S. Pensotti, P. G. Rancoita, and A. Seidman, “The Effect of Radiation on Ion-Implanted Silicon Detectors”, Nuclear Instruments and Methods in Physics Research A243, pp.93-97, 1986.
[14] J. B. A., B. D. Hyams, L. Hubbeling, J. C. Vermeulen, and P. Weilhammer, “Capacitive Charge Division Readout with a Silicon Strip Detector”, Nuclear Instruments and Methods in Physics Research 185, pp.43-47, 1981.
[15] M. Caccia, L. Evensen, T. E. Hansen, R. Horisberger, L. Hubbeling, A. Piesert, T. Tuuva, P. Weilhammer, and A. Zalewska, “A Si Strip Detector with Integrated Coupling Capacitors”, Nuclear Instruments and Methods in Physics Research A260, pp.124-131, 1987.
[16] L. Evensen, T. E. Hansen, R. Horisberger, L. Hubbeling, H. P. Kaukonen, G. Maehlum, A. Peisert, T. Tuuva, P. Weihammer, and A. Zalewska, “Recent Development of Detectors with Integrated Capacitors and Polysilicon Resistors”, IEEE Transactions on NUCLEAR SCIENCE, Vol. 35, pp.428-431, 1988.
[17] G. Batignani, L. Bosiso, E. Forcardi, F. Forti, M. A. Giorgi, L. Moneta, G. Parrini, G. Tonelli, and G. Triggiani, “Development and Performance of Double Sided Silicon Strip Detecrors”, Nuclear Instruments and Methods in Physics Research A310, pp.160-164. 1991.
[18] P. Hell, J. Kemrner, U. Prrchtel, T. Ziemann, D. Hauff, G. Lutz, A. S. Schwarz, and L. Struder, “A Double-Sided Silicon Strip Detector with Capacitive Readout and a New Method of Integrated Bias Coupling”, IEEE Trans. on NUCLEAK SCIENCE, Vol. 36, pp.251-Z55, 1989.
[19] B. S. Avset, L. Evensen, V. Chabaud, H. Dijkstra, R. Horisberger, L. Hubbeling, G. Maehlum, A. Peisert, I. Roditi, P. Weilhammer, A. Czermak, P. Jalocha, M. Turala, P. Bambade, W. Dulinski, R. Turchetta, M. Schaeffer, M. Battaglia, I. Hietance, and T. Tuuva, “A New Microstrip Detector with Double-sided Readout”, CERN-EP/90-11, January 23rd, 1990.
[20] H. Dijkstra, R. Horisberger, L. Hubbeling, G. Maehlum, A. Peisert, P. Weilhammcr; A. Zalewska, T. Tuuva, and L. Evensen, “Radiation Tests with Capacitively Coupled Silicon Detectors”, European Organization for Nuclear Research, August 2nd, 1988.
[21] G.Batignani, L. Bosisio, A. Conti, E. Focardi, F. Forti, M. A. Giorgi, M. Grandi, G. Parrini, P. Tempesta, G. Tonelli, and G. Triggiani, “Test Results on Double-Side Readout Silicon Strip Detectors”, IEEE Trans. on NUCLEAR SCIENCE, Vol. 36, pp.40-45, 1989.
[22] T.Ohsugi, Y. Iwata, H. Ohyama, T. Ohmoto, M. Okada, M. Yoshikawa, N. Tamura, T. Hatakenaka, Y. Unno, T. Kohriki, N. Ujiie, H. Miyata, T. Aso, R. Takashima, A. Murakami, S. Kobayashi, K. Yamamoto, K. Yamamura, and M. Muramatsn, “Microdischarges of AC-coupled Silicon Strip Sensors”, Nuclear Instruments and Methods in Physics Research A342, pp.22-26, 1994.
[23] J. Kemmer and G. Lutz, “Concepts for Simplification of Strip Detector Design and Production”, Nuclear Instruments and Methods in Physics Research A326, pp.209-213, 1993.
[24] F. Djama, W. Dulinski, A. Lagos, A. Perret, P. Weilhammer, and P. Weiss, “Double-Sided Double-Metal AC-Coupled Silicon Microstrip Detectors”, 6th Pisa Meeting on Advanced Detectors, La Biodola, Isola d’Elba, May 22-28, 1994.
[25] Y. Saitoh, T. Akamine, M. Inoue, J. Yamanaka, K. Kadoi, R. Takano, Y. Kojima, S. Miyahara, M. Kamiya, H. Ikeda, T. Matsuda, T. Tsuboyama. H. Ozaki, M. Tanaka, H. Iwasaki, J. Haba, Y. Higashi, Y. Yamada, S. Okuno, S. Avrillon, T. Nemoto, I. Fukunishi, and Y. Asano, “Fabrication of a Double-Sided Silicon Microstrip Detector with an ONO Capacitor Dielectric Film”, IEEE Trans. on NUCLEAR SCIENCE, Vol. 43, pp.l123-1129, 1996.
[26] W. T. Lin, Y. H. Chang, A. E. Chen, K. T. Huang, and W. C. Tsay, “PHOSBOS Silicon Sensor Production at NCU”, PHOROS project review of quarter 2, National Brookhaven Laboratory, June 18, 1997.
[27] H. Miyata, T. Aso, K. Sakurakichi, K. Miyano, J. Haba, H. Ikeda, H. Iwasaki, T. Matsuda, H. Ozaki, M. Tanaka, T. Tsuboyama, Y. Yamada, S. Okuno, S. Avrillon, M. Hazumi, Y. Nagasima, Y. Asano, S. Mori, C. Fukunaga, E. Banas, A. Bozek, Z. Natkaniec, H. Parka, M. Kozanska, K. Rybicki, K. Yamamoto, and K. Yamamura, “Load Capacitance of Single-Sided Silicon Strip Detectors with Double-Metal Layers", Nuclear Instruments and Methods in Physics Research A383, pp.110-115, 1996.
[28] K. Saito, M. Konmura, M. Nakamura, H. Tajima, K. Teraoka, T. Nakano, O. Sate, K. Niwa, K. Yamamoto, and K. Yamamura, “Basic Characteristics of Silicon Strip Detectors with Double Layer Aluminum Electrodes”, Nuclear Instruments and Methods in Physics Research A326, pp.204-208, 1993.
[29] Wen-Chin Tsay, Jyh-Wong Hong, Y.H.Chang, A.Chen, S.R.Hou, S.L.Hsu, C.H.Lin, Willis T.Lin, Hsien-Jen Ting, Song-Tsang Chiang, Emily Chuang, and Su-Wen Hwang, “Studies of Large- Area Silicon Microstrip Sensors”, IEEE Trans. On Nuclear Science, Vol.42, No.4, pp. 437-440, 1995.
[30] Y. C. Kao and E. D. Wolley, “High Voltage Planar p-n Junctions,” Proc. IEEE, 55, 1490-1414 (1967).
[31] L. Evensen, A. Hanneborg, B. S. Avest, and M. Nese, “Guard Ring Design for High Voltage Operation of Silicon Detectors”, Nuclear Instruments and Methods in Physics Research A337, pp.44-52, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top