(3.220.231.235) 您好!臺灣時間:2021/03/08 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱凱偉
研究生(外文):Chu Kai-Wei
論文名稱:輔助源法在三維彈性問題的應用
論文名稱(外文):Application of Auxilliary Source Method for Three Dimensional Elasticity Problems
指導教授:張江南張江南引用關係鄔蜀威鄔蜀威引用關係
指導教授(外文):Chang Chiang-NanWu Shu-Wei
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:48
中文關鍵詞:輔助源法邊界元素法
外文關鍵詞:Auxilliary Source MethodBoundary Element Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨係利用邊界元素法來處理三維彈性力學中 , 無限區域 和有限區域的問題 。
對於無限區域的問題 , 邊界元素法比有限元素法更能夠得到精確的解 。 但邊界積分方程式中 , 當場點和源點重合時 , 會造成奇異性積分的問題 。 本文提出的方法是在實體邊界的外部 , 假想有一輔助面源 , 此假想的源具有實際的物理意義 , 並且在輔助邊界上以八節點的曲面等參元素做建立網格 。 藉由此法 , 可避免源點和場點的重合,不會造成奇異性的積分 , 再加上邊界元素法能將維度降一階 , 減少了龐大的運算時間 。
由數值結果與解析解的比較 , 本文的方法證實 , 應用在彈性力學問題上是一個有效 、 可靠的方法 。

The aim of this research is to deal with three dimensional elasticity problem using the BoundaryElement Method (BEM). The problems contain infinite and finite domain problems. For infinite domain it can obtain more accurate solution than Finite Element Method.
BEM can reduces the dimension of problem by one it can be frugal computation time. In this research, we suppose an auxilliary surface source exterior to the actual boundary. The auxilliary surface is discretized by element mesh with eight-noded isoparametric elements. This method cancels the singular integral problem because the field point do not coincide with the source point.
The numerical results are very accurate compared with the analytical solution. It is proved that this method is an efficient and reliable numerical method in handling the elasticity problem.

中文摘要............................I
英文摘要............................II
誌謝..............................III
目錄..............................IV
圖目錄.............................VI
表目錄.............................VII
符號說明............................VIII
第一章 緒論 ...........................1
1.1 研究動機..........................1
1.2 文獻回顧..........................2
1.3 本文架構..........................4
第二章 邊界元素公式 .......................5
2.1 統御方程式.........................5
2.2 基本解...........................8
2.3 計算場點位移的邊界積分式..................10
2.4 計算場點應力的邊界積分式..................13
第三章 公式推導.........................15
3.1 元素與形狀函數.......................15
3.2 公式之離散化........................17
3.3 分析原理..........................22
第四章 實例測試與結果......................27
4.1 外部問題..........................27
4.2 內部問題..........................32
4.3 輔助面與實體邊界的距離之影響................41
4.4 收斂性...........................41
第五章 結論...........................45
參考文獻............................47

1. Rizzo, F.J. (1967) ``An Integral Equation Approach to Boundary Value Problems of Classical Elastotatics'', Quarterly of Applied Mathematics, Vol. 25, pp. 83-95.
2. Cruse, T.A. (1969) ``Numerical Solutions in Three Dimensional Elastostatics'', International Journal Solids Structures, Vol. 5, pp. 1259-1274.
3. Cruse, T.A. (1974) ``An Improved Boundary-Integral Equation Method
for Three Dimensional Elastic Strees Analysis'', Computers and Structures, Vol. 4, pp. 741-754.
4. Qliveria, E.R.A. (1968) ``Plane Stress Analysis by a General Integral Method'', Proceedings ASCE, Journal of Engineering Mechanics Division, Vol. 94 No. EM1
pp. 79-85.
5. Heise, U. (1978) ``Numerical Properties of Integral Equations in which the Given Boundary Values and the Sought Solutions Are Defined on Different Curves'', Computers and Structures, Vol. 8, pp. 199-205.
6. Butterfield, R. and Banerjee, P.K. (1971) ``The Elastic Analysis of Compressible Piles and Pile Groups'', Geotechnique, Vol. 21, pp. 43-60.
7. Tomlin, G.R. and Butterfield, R. (1974) ``Elastic Analysis of Zoned Orthotropic Continus'', Proceedings ASCE, Journal of Engineering Mechanics Division, Vol. 94 No. EM1 pp. 511-529.
8. Banerjee, P.K. (1976) ``Integral Equation Methods for Analysis of Piece-Wise Non Homogeneous Three-Dimensional Elastic Solids of Arbitrary Shape'', International Journal of Mechanical Sciences, Vol. 18, pp. 293-303.
9. Gary, B. and Enayat M. (1984) ``A Comparison of the Boundary Element and Superposition Methods'', Computers and Structures, Vol. 19, pp. 697-705.
10. Koopmann, G.H., Song, L. and Fahnline, J.B. (1989) ``A Method for Computing Acoustic Fields Based on the Principle of the Wave Superposition'', The Journal of Acoustical Society of America, Vol. 86, pp. 2433-2438.
11. Jeans, R. and Mathews, I.C. (1992) ``The Wave Superposition Method
as a Robust Technique for Computing Acoustic Fields'', The Journal of Acoustical Society of America, Vol. 92, No. 2, pp. 1156-1166.
12. Brebbia, C.A., and Dominguez, J. (1992) Boundary Element an Introductory Course, Second Edition, Computational Mechanics Publications, Southampton Boston.
13. Adel, S.S. (1974) Elasticity Theory and Applications, Pergamon Press, New York.
14. Reismann, H. and Pawlik, P.S. (1980) Elasticity Theory and Applications, Wiley, New York.
15. Brebbia, C.A , Telles, J.C.F. and Wrobel, L.C. (1984) Boundary Element Techniques : Theory and Applications in Engineering, Berlin

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔