|
[1] E. A. Friis, R. S. Lakes and J. B. Park, ”Negative Poisson''s ratio polymeric and metallic foam”, Journal of Materials Science, Vol. 23, pp. 4406-4414, 1988. [2] A. E. Love, in “A Treatise on the Mathematical Theory of Elasticity” , Dover Publication, NY ,1944. [3] M. Mikii and Y. Murotsu, JSME Int. J. Vol. 32, pp. 67 ,1989. [4] K. L. Alderson and K. E. Evans, Polymer, Vol. 33, pp. 4435, 1992. [5] Z. Hashin, J. Appl. Mech. Vol. 50, pp. 481, 1983. [6] J. B. Choi and R. S. Lakes, J. Mater. Sci. Vol. 27, pp.4678, 1992. [7] Robert F. Almgren,“An isotropic three-dimensional structure with Poisson’s ratio = -1”, Journal of Elasticity, Vol. 15, pp. 427-430 ,1985. [8] D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a Poisson’s ratio of —1” , Int. J. Mech. Sci. Vol. 39, No. 3, pp. 305-314, 1997. [9] K. E. Evans, “Tensile network microstructures exhibiting negative Poisson’s ratios”, J. Phys. D: Appl. Phys. Vol. 22 ,pp. 1870-1876, 1989. [10] Ulrik Darling Larsen, Ole Sigmund, and Siebe Bouwstra, “Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson’s Ratio”, Journal of microelectromechanical systems, Vol. 6, No. 2, pp.99- 106, 1997. [11]Roderic Lakes, “Foam Structures with a Negative Poisson’s Ratio”, Science, Vol. 235, No. 27, pp. 1038-1040, 1987. [12]W. E. Warren and A. M. Kraynik , “Foam mechanics : The linear elastic response of two-dimensional spatially periodic cellular materials”, Mechanics of Materials, Vol.6, pp. 27-37,1987. [13] Thomas L. Warren “ Negative Poisson’s ratio in a transversely isotropic foam structure”, J. Appl. Phys. 6 (12), 15, pp. 7591-7594, 1990. [14] Jinhee Lee, ”Application of homogenization FEM analysis to regular and re-entrant honeycomb structures”, Journal of Materials Science, Vol. 31, pp. 4105-4410, 1996. [15] R. E. Jones, ”A Generalization of the Direct Stiffness Method of Structural Analysis”, AIAA Journal, Vol. 2, pp. 821-826, 1964. [16] R. Lakes, ”Experimental Micro Mechanics Methods for Conventional and Negative Poisson’s Ratio Cellular Solids as Cosserat Continua”, Journal of Engineering Material and Technology, Vol. 113, pp. 148-155, 1991. [17] B. M. Lempriere, “Poisson’s Ratio in Orthotropic Materials”, AIAA Journal, Vol. 6, No. 11, pp. 2226-2227, 1968. [18] W. E. Warren and A. M. Kraynik, “The Linear Elastic Properties of Open-Cell Foam”, Journal of Applied Mechanics , Vol.55 pp.341-346,1988. [19] K. L. Alderson and K.E. Evans, “The fabrication of microporous polyethylene having a negative Poisson’s ratio”, Polymer, Vol. 33, No. 20, pp. 4435-4438, 1992. [20] B. D. Caddock and K. E. Evans, “Microporous materials with negative Poisson’s ratios : I. Microstructure and mechanical properties”, J. Phys. D: Appl. Phys. Vol. 22, pp.1877-1882, 1989. [21] K. E. Evans and B. D. Caddock, “Microporous materials with negative Poisson’s ratios: II. Mechanisms and interpretation. [22] J. B. Choi and R. S. Lakes, “Fracture toughness of re- entrant foam materials with a negative Poisson’s ratio: experiment and analysis”, International Journal of Fracture, Vol. 80, pp.73-83,1996. [23] K.W. Wojciechowski, “Two-dimensional isotropic system with a negative Poisson’s ratio, Physics letters A, Vol. 137, Number 1, 2, 1989. [24] Clive L. Dym and Irving H. Shames, “Solid Mechanics: A Variational Approach”, 北門出版社, 74年10月. [25] 錢偉長著, “彈性力學”, 亞東書局, 1991. [26] Tirupathi R. Chandrupatla and Ashok D. Belegundu, “Introduction to Finite Element in Engineering, Second edition”, Prentice-Hall, 1997. [27] Irving H. Shames and Clive L. Dym, “Energy and Finite Element Methods in Structural Mechanics”, 歐亞書局, 74 年5月. [28] D. J. Dawe著, 劉偉源譯, “結構體的有限元素法”, 東華 書局, 1992. [29] 王勗成, 邵敏, “有限元素法基本原理與數值方法”,亞東 書局, 1990.
|