王天送 (1996) 鋼筋混凝土與鹼-矽反應防範對策之探討:土木水利,第23卷2期,共4頁。王櫻茂,吳振成,楊宏儀,田永銘,許智能 (1990) 以普蜀蘭混合材料防治鹼-骨材反應 (一):行政院國科會專題研究報告,共98頁。王櫻茂,吳振成,楊宏儀,田永銘,許智能 (1991) 以普蜀蘭混合材料防治鹼-骨材反應 (二):行政院國科會專題研究報告,共101頁。
王櫻茂,吳振成,楊宏儀,田永銘,陳欲新 (1989) 台灣地區鹼-骨材反應特性之研究:行政院國科會專題研究報告,共98頁。
田永銘,楊世和,彭柏翰,王淑慧 (1999) 台灣的鹼-骨材反應問題與對策:土木水利第二十六卷第一期,共16頁。吳南均 (1986) X光繞射及螢光分析儀器原理及應用:國科會工程研發中心,第四屆貴重儀器研討會,共33頁。
李釗, 許書王, 陳貴清 (1996) 由破裂之消波塊探討鹼骨材反應:港灣報導,第38卷,共10頁。
林晏吉 (1999) 花東地區鹼-骨材反應之成因探討:國立中央大學土木工程研究所,碩士論文。國科會南部貴重儀器使用中心 (1986) 第四屆貴重儀器研討會,共9頁。
梁士宏 (1995) 制定鹼-骨材反應試驗方法及其規範研究:國立成功大學土木工程研究所,碩士論文。許智能 (1991) 以普蜀蘭混合材料防制鹼-骨材反應:國立成功大學土木工程研究所,碩士論文。
許樹恩、吳泰伯 (1993) X光繞射原理與材料結構分析:行政院國家科學委員會精密儀器發展中心,共1頁。
陳仁達 (1998) 花東地區鹼-骨材反應及防治方法:國立中央大學土木工程研究所,碩士論文。陳裕新 (1989) 台灣地區鹼-骨材反應特性之研究:國立成功大學土木工程研究所,碩士論文。楊世和 (1997) 台灣東部反應性骨材之探討及分析:國立中央大學土木工程研究所,碩士論文。褚炳麟,顏聰,盧俊寬 (1994) 台灣西部地區砂石料源鹼質反應調查研究:交通部台灣區國道新建工程局研究報告,共108頁。
蔡宗琳 (1997) 花蓮木瓜溪砂適當量的研究:國立成功大學土木工程研究所,碩士論文。謝文凱 (1997) 抑制鹼-骨材反應之基礎研究:國立中央大學土木工程研究所,碩士論文。ASTM C1260-94. (1994) Standard test method for potential alkali reactivity of aggregate ( mortar bar method ):Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C227-81. (1981) Test method for potential alkali reactivity of cement-aggregate combination ( mortar bar method ):Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C289-81. (1981) Potential reactive of aggregate ( chemical method ):Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C295-90. (1990) Standard guide for petrographic examination of aggregate for concrete:Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C490-86. (1986) Standard specification for apparatus for use in measurement of length change of hardened cement paste, mortar and concrete:Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
Bayliss, P. (1978) Nontronite and ferruginous opal from the Peace River Iron Deposit in Alberta, Canada:Discussion:Canadian Mineralogist, Vol. 16, p. 119.
Berube, M. A. and Frenette, J. (1994) Testing concrete for AAR in NaOH and NaCl solution at 38℃ and 80℃:Cem. Conr. Composites, Vol 16, p. 189-198.
Blackwell, B. Q. and Pettifer, K. (1992) Alkali-reactivity of greywacke aggregates in Maentwrog Dam ( North Wales ):Mag. Concr. Res., Vol. 44, p. 255-264.
Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B. and Thomas, T. L. (1956):J. Am. Chem. Soc. Vol. 78, p.5063-5070.
Cole, W. F., Lancuck, C. J. and Sandy, M. J. (1981) Products formed in an aged concrete:Cem. Concr. Res., Vol. 11, p. 443-454.
Davies, G. and Oberholster, R. E. (1987) An interlaboratory test programme on the NBRI accelerated test to determine the alkali-reactivity of aggregates:National Building Research Institute, CSIRO, Special Report BOU 92, Pretoria, RSA, p. 16.
Davies, G. and Oberholster, R. E. (1987) Use of the NBRI accelerated test to evaluate the effectiveness of mineral admixtures in preventing the alkali-silica reaction:Cem. Concr. Res., Vol. 17, p. 97-107.
Deer, W. A., Howie, R. A. and Zussmann, J. (1963) Framework silicates:Rock-forming minerals, Vol. 4, p. 435.
Diamond, S. (1981) A review of alkali-silica reaction and expansion mechanisms II:reactive aggregate:Cem. Concr. Res., Vol. 6, p.549-560.
Dolar-Mantani, L. M. M. (1981) Undulatory extinction in quartz used for identifying potentially alkali-reactive rocks:Proc. 5th ICAAR, p. 1-12.
Duncan, M. A. G., Swenson, E. G., Gillot, J. E. and Foran, M. R., (1973) Alkali aggregate reaction in Nova Scotia. Pt. I. summary of a five-year study:Cem. Concr. Res., Vol. 3, p. 119-128.
Gillott, J. E. (1975) Alkali-aggregate reaction in concrete:Engineering Geology, Vol. 9, p.303-326.
Gillott, J. E. and Rogers, C. A. (1994) Alkali-aggregate reaction and internal release of alkalis:Mag. Concr. Res., Vol. 46, p. 99-112.
Gillott, J. E. and Swenson, E. G. (1973) Some unusual alkali-expansive aggregate:Engineering Geology, Vol. 7, p. 181-195.
Grattan-Bellew, P. E. (1986) Is undulatory extinction in quartz indicative of alkali-expansivity of granitic aggregate: Proc. 7th ICAAR, p. 434-439.
Grattan-Bellew, P. E. (1995) A critical review of accelerated ASR tests." Proc. 10th ICAAR, London, p. 27-38.
Grattan-Bellew, P. E., Beaudoin, J. J., and Vallee , V. G. (1998) Effect of aggregate particle size and composition on expansion of mortar bars due to delayed ettringite formation:Cem. Concr. Res., Vol. 28, p. 1147-1156.
Hadley, D. W. (1961) Alkali reactivity of carbonate rocks-expansion and dedolomitization:Proceeding Highway Research Board, Vol. 40, p. 462-474.
Hadley, D. W. (1964) Alkali reactivity of dolomitic carbonate rocks:Highw. Res. Rec., Vol. 45, p. 1-17.
Hansen, W. C. (1944) Studies relating to the mechanism by which the alkali aggregate reaction produces expansion in concrete:J. Am. Concr. Inst., Vol. 15, p. 213-227.
Hooten, R. D. (1991) New aggregtae alkali reactivity test methods:Ministry of Transportation, Ontario, Canada, MAT-91-14.
Idorn, G. M. (1967) Durability of concrete structures of Denmark ( A study of field behaviour and microscopic features ):Techn. University of Denmark, Copenhagen.
Jakobsen, U. H., Thaulow, N., and Johansen, V. (1992):Cem. Concr. Res., Vol.22, p. 1148-1160.
Jones, J. B. and Segnit, E. R. (1971) The nature of opal, I. Nomenc-lature and constituent phases:J. Geol. Soc. Australia, Vol. 18, p. 57-68.
Katayama, T. (1997) Petrography of alkali-aggregate reactions in concrete reactive minerals and reaction products:East Asia Alkali-Aggregate Reaction Seminar.
Kawamura, M., Takeuchi, K. and Sugiyama, A. (1996) Machanism of the influence of externally supplied NaCl on the expansion of mortars containing reactive aggregate:Mag. Concr. Res. Vol 48, p. 237-248.
Knudsen, T. and Thaulow, N. (1975) Quantitative microanalyses of alkali-silica gel in concrete:Cem. Concr. Res., Vol. 5, p. 443-454.
Laing, S. V., Scrivener, K. L. and Pratt, P. L., Proc. 9th ICAAR, London, England, p.579-586.
Ludmila, D. M. (1983) Handbook of concrete aggregates:Noyes Publications, Park Ridge, New Jersey, USA.
Meissner, H. S. (1941) Cracking in concrete due to expansive reaction between aggregate and high-alkali cement as evident in Parker Dam.:J. Am. Concr. Inst., Proc. Vol. 12:p. 549-568.
Mielenz, R. C. (1958) Petrographic examination of concrete aggregate to determine potential alkali reactivity:Highway Research Report 18-C, p. 29-35.
Murata, K. J. and Norman, M. B. (1976) An index of crystallinity for quartz:American Journal of Science, Vol. 276, p. 1120-1130.
Oberholster, R. E. (1983) Alkali reactivity of siliceous rock aggregates:diagnosis of the reaction testing of cement and aggregate and prescription of preventative measures:Alkali in Concrete Research and Practice, Copenhagen, Danish Concrete Association, p. 419-433.
Oberholster, R. E., and Davies, G. (1986) An accelerated method for testing the potential alkali reactivity of siliceous aggregates:Cem. Concr. Res., Vol. 16, p.181-189.
Shayan, A. (1992) Prediction of alkali reaction potential of some Australian aggregates and correlation with service performance:ACI Materials Journal, Vol. 89, p.13-23.
Shayan, A. (1997) Effects of NaOH and NaCl solutions and temperature on the behavior of specimens subjected to accelerated AAR tests:Cem. Concr. Res., Vol. 28, p.25-31.
Shayan, A. and Ivanusec, I. (1996) An experimental clarification of the association of delayed ettringite formation with alkali-aggregate reaction:Cem. Concr. Composites, Vol. 18, p.161-170.
Shayan, A. and Quick, G. (1989) Microstructure and composition of AAR products in conventional standard and new accelerated testing:Proc. 8th ICAAR, p.475-482.
Shayan, A., Diggins, R., Ritchie, D. F. and Westgate, P. (1987) Evaluation of western Australian aggregates for alkali-reactivity in concrete:Proc. 7th ICAAR, p.247-252.
Shayan, A., Ivanusec, I. and Westgate, P. L. (1988) Accelerated testing of some Australian and overseas aggregates for alkali-aggregate reactivity:Cem. Concr. Res. Vol. 18, p. 843-851.
Sibbick, R. G. and Page, C. L., Proc. 10th ICAAR, Melbourne, Australia, p.822.
Stanton, T. E. (1940) The expansion of concrete through reaction between cement and concrete:Proc. American Soc. Civil Engineers, Vol.66, p. 1781-1811.
Stanton, T. E. (1942) Expansion of concrete through reaction between cement and concrete:American Soc. Chem. Engineers Trans., Vol.107, p. 54-84.
Thanlow, N., Jakobsen, U. H. and Clark, B. (1996) Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses:Cem. Concr. Res., Vol. 26, p. 309-318.
Van Aardt, J. H. P. and Visser, S. (1977) Calcium hydroxide attack on felspars and clays:possible relevance to cement-aggregate reactions:Cem. Concr. Res., Vol. 7, p. 643-648.
Van Aardt, J. H. P. and Visser, S. (1977) Formation of hydrogarnets:calcium hydroxide attack on clays and feldspars:Cem. Concr. Res., Vol. 7, p. 39-44.
Van Aardt, J. H. P. and Visser, S. (1978) Reaction of Ca(OH)2 and of Ca(OH)2+CaSO4·2H2O at various temperatures with feldspars in aggregates in aggregate used for concrete making:Cem. Concr. Res., Vol. 8, p. 677-681.
Wigum, B. J. and French, W. J. (1996) Sequential examination of slowly expanding alkali-reactive aggregate in accelerated mortar bar testing:Mag. Concr. Res., Vol 48, p. 281-292.