(34.201.11.222) 您好!臺灣時間:2021/02/25 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王淑慧
研究生(外文):Shu-Hui Wang
論文名稱:台灣地區岩石之鹼-骨材反應潛能研究
論文名稱(外文):Study on potential of AAR in the rocks of Taiwan
指導教授:陳維民陳維民引用關係田永銘田永銘引用關係
指導教授(外文):Wei-Min Donald ChenYong-Ming Tien
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:150
中文關鍵詞:鹼-骨材反應鹼-氧化矽反應產物裂化岩象分析X-光區域分析
外文關鍵詞:alkali-aggregate reactionASR productcrackingpetrographic examinationX-ray mapping
相關次數:
  • 被引用被引用:15
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究利用一系列的鹼-骨材反應試驗法,針對台灣地區不同種類的岩石及花蓮溪河川砂石進行試驗,並將試驗結果與現地案例進行比對。
研究結果顯示,產自於台灣東部中央山脈的變質燧石、糜嶺岩,海岸山脈的綠色斑狀安山岩、紅色斑狀安山岩、安山岩,以及屬於大屯火山系的北部麟山鼻之富含玻璃質安山岩等,經試驗後均顯示具鹼-骨材反應,其中綠色斑狀安山岩及紅色斑狀安山岩骨材在反應過程中並出現含Si、Na、Ca、K、Fe成份的典型鹼-氧化矽反應產物,更可以確定其危害性。產自澎湖的玄武岩、台灣東部中央山脈的片麻岩、糜嶺岩化片麻岩、大理岩等則不具有鹼-骨材反應潛能,屬於安全性的骨材。
在危害性骨材當中,含安山岩類骨材的水泥砂漿棒,裂化發生的最早,其中綠色斑狀安山岩、紅色斑狀安山岩及安山岩造成的裂隙型式相同,具有裂縫較大且呈局部集中的特徵,而富含玻璃質之安山岩造成的裂隙分布較均勻一致,裂隙寬度大小相等。糜嶺岩、板岩及變質燧石骨材的裂化行為發生的較晚,造成的裂隙細小且分布零星。另外,水泥砂漿棒的裂化行為與其膨脹量及反應膠體的含量多寡無關。
利用岩象分析結果發現,骨材中石英顆粒的大小與顆粒晶界的狀態為影響鹼-骨材反應的重要機制,而當骨材內含有大量的玻璃質及石英微晶時,也較容易和水泥發生鹼-骨材反應,造成危害,其中含有玻璃質的骨材較含有石英類礦物的骨材造成較大程度的鹼-骨材反應。
利用X-光區域分析發現,當安山岩類基質中的Si及K含量越高時,所造成的鹼-骨材反應也就越劇烈,而Ca、Al含量的多寡則與鹼-骨材反應無關。
在花蓮溪河川砂石方面,經試驗發現具有鹼-骨材反應的潛能,其中所含有的有害岩類為變質燧石、紅色斑狀安山岩及綠色斑狀安山岩。將實驗結果與現地案例對照,發現由花蓮溪骨材所製成的消波塊的確具有明顯的鹼-骨材反應特徵,所以在工程使用上需要加以特別注意。
A series of AAR tests was performed in this study to investigate different kinds of rocks and Hualienhsi aggregates in Taiwan , the testing results were further compared with local case studies.
It was found that matachert and mylonite from Central Range in eastern Taiwan, green porphyritic andesite, red porphyritic andesite and andesite from Coastal Range, and glass-rich andesite from Linshanpi in nortern Taiwan which belongs to Tatun volcanic system, revealed significant AAR features. Furthermore, green porphyritic andesite and red porphyritic andesite showed a typical ASR product which consists of Si, Na, Ca, K and Fe during reaction. Therefore, those materials can certainly be confirmed deleterious. On the other hand, basalt from Penghu; gneiss, mylonitic gneiss and marble from Central Range in eastern Taiwan, are safe to be used.
Among the deleterious aggregates, the andesitic aggregates caused the first cracking, in which green porphyritic andesite, red porphyritic andesite and andesite perform similar characteristics with larger cracks and local distribution. Glass-rich andesite caused uniform cracks with equal width. Mylonite, slate and metachert caused the latest cracking, the cracks were very thin and fragmentary distributed. In addition, the cracking of mortar bars are irrelevant with the expansion and content of gel.
The petrographic examination result showed that size and grain boundary of quartz in aggregates are the important mechanism of AAR, and it is easily to react with cement to cause damage when aggregates contain a lot of glass and quartz microcrystalline meterials. In general, the aggregates contain glass lead to more AAR expansion than contain quartz did.
The X-ray mapping result showed that the more Si and K ions contain in groundmass of andesites, the more AAR expansion, but the contents of Ca and Al ions are irrelevant to AAR.
As for Hualienhsi aggregates, the results from AAR tests showed a significant AAR potential, in which metachert, green porphyritic andesite and red porphyritic andesite are deleterious. Comparing the testing results with the results measures from local case studies, it is found that the concrete block which is made up of Hualienhsi aggregates show significant AAR characteristics. Therefore, we shall pay more attention to apply those aggregates in future construction work.
第一章 緒論
1-1 研究動機 1
1-2 研究目的 2
1-3 研究範圍及方法 2
第二章 文獻回顧
2-1 鹼骨材反應6
2-2 鹼-骨材反應的分類7
2-2-1 鹼-氧化矽反應7
2-2-2 鹼-矽酸鹽反應8
2-2-3 鹼-碳酸鹽反應8
2-3 鹼-氧化矽反應過程9
2-4 鹼-骨材反應的症狀10
2-4-1 外觀方面10
2-4-2 內部方面12
2-4-3 反應圈13
2-5 鹼-骨材反應所引起的損害13
2-6 鹼-骨材反應的先決條件14
2-7 影響鹼-骨材反應膨脹程度的因素16
2-8 鹼反應性骨材之形式與分類 22
2-9 具潛在鹼-氧化矽反應之礦物及岩石23
2-10 鹼-氧化矽反應的產物 29
2-10-1 反應產物的微構造 29
2-10-2 反應產物的化學成份 30
2-11 有關鹼-骨材反應試驗法的討論 33
2-12 台灣地區的研究與案例36
第三章 實驗計畫與方法
3-1 實驗規劃 39
3-2 試驗材料 40
3-3 試驗儀器及設備42
3-4 實驗方法及步驟42
3-4-1 鹼-骨材反應潛能之快速化學試驗 42
3-4-1-1 儀器與試劑43
3-4-1-2 試驗步驟43
3-4-2 鹼-骨材反應潛能之水泥砂漿棒試驗 50
3-4-2-1 儀器與條件51
3-4-2-2 試驗步驟52
3-4-3 鹼-骨材反應潛能之加速水泥砂漿棒試驗56
3-4-3-1 儀器與條件56
3-4-3-2 試驗步驟57
3-4-4 岩象分析59
3-4-5 掃描式電子顯微鏡分析 61
3-4-6 X-ray能量分散光譜儀分析 62
3-4-7 X-ray擾射分析 62
3-4-8 電子微探儀分析 63
第四章 實驗結果與分析
4-1 單一岩種試驗 65
4-1-1 骨材反應潛能之化學分析試驗 68
4-1-2 水泥砂漿棒之鹼反應潛能試驗 68
4-1-2-1 不同種類骨材之鹼-骨材反應潛能 68
4-1-3 加速水泥砂漿棒之鹼-骨材反應潛能試驗 79
4-1-3-1 不同種類骨材之鹼-骨材反應潛能 80
4-1-3-2 不同骨材所組成之砂漿棒的膨脹特性81
4-1-3-3 不同骨材所組成之砂漿棒的裂化行為及裂隙形式82
4-1-3-4 不同骨材所組成之砂漿棒的膨脹行為、反應膠體多寡與裂化作用之間的關係88
4-1-4 岩象分析101
4-1-4-1 水泥砂漿棒膨脹程度與骨材岩象之間的關係 101
4-1-5 安山岩骨材成份分析 114
4-1-5-1 水泥砂漿棒的膨脹程度與安山岩基質成份的關係114
4-1-6 安山岩反應產物分析 121
4-1-6-1 反應產物的構造與化學成份121
4-1-7 綜合結果 123
4-2 花蓮溪骨材試驗 123
4-2-1 水泥砂漿棒之鹼反應潛能試驗 123
4-2-2 加速水泥砂漿棒之鹼-骨材反應潛能試驗 126
4-2-3 ASTM C227與ASTM C1260試驗法之比較 128
4-2-4 綜合結果130
4-3 現地案例調查131
4-3-1 消波塊岩心之微觀分析 131
4-3-2 反應產物分析 133
第五章 結論與建議
5-1 結論 139
5-2 建議 141
參考文獻 142
英文摘要 149
王天送 (1996) 鋼筋混凝土與鹼-矽反應防範對策之探討:土木水利,第23卷2期,共4頁。
王櫻茂,吳振成,楊宏儀,田永銘,許智能 (1990) 以普蜀蘭混合材料防治鹼-骨材反應 (一):行政院國科會專題研究報告,共98頁。
王櫻茂,吳振成,楊宏儀,田永銘,許智能 (1991) 以普蜀蘭混合材料防治鹼-骨材反應 (二):行政院國科會專題研究報告,共101頁。
王櫻茂,吳振成,楊宏儀,田永銘,陳欲新 (1989) 台灣地區鹼-骨材反應特性之研究:行政院國科會專題研究報告,共98頁。
田永銘,楊世和,彭柏翰,王淑慧 (1999) 台灣的鹼-骨材反應問題與對策:土木水利第二十六卷第一期,共16頁。
吳南均 (1986) X光繞射及螢光分析儀器原理及應用:國科會工程研發中心,第四屆貴重儀器研討會,共33頁。
李釗, 許書王, 陳貴清 (1996) 由破裂之消波塊探討鹼骨材反應:港灣報導,第38卷,共10頁。
林晏吉 (1999) 花東地區鹼-骨材反應之成因探討:國立中央大學土木工程研究所,碩士論文。
國科會南部貴重儀器使用中心 (1986) 第四屆貴重儀器研討會,共9頁。
梁士宏 (1995) 制定鹼-骨材反應試驗方法及其規範研究:國立成功大學土木工程研究所,碩士論文。
許智能 (1991) 以普蜀蘭混合材料防制鹼-骨材反應:國立成功大學土木工程研究所,碩士論文。
許樹恩、吳泰伯 (1993) X光繞射原理與材料結構分析:行政院國家科學委員會精密儀器發展中心,共1頁。
陳仁達 (1998) 花東地區鹼-骨材反應及防治方法:國立中央大學土木工程研究所,碩士論文。
陳裕新 (1989) 台灣地區鹼-骨材反應特性之研究:國立成功大學土木工程研究所,碩士論文。
楊世和 (1997) 台灣東部反應性骨材之探討及分析:國立中央大學土木工程研究所,碩士論文。
褚炳麟,顏聰,盧俊寬 (1994) 台灣西部地區砂石料源鹼質反應調查研究:交通部台灣區國道新建工程局研究報告,共108頁。
蔡宗琳 (1997) 花蓮木瓜溪砂適當量的研究:國立成功大學土木工程研究所,碩士論文。
謝文凱 (1997) 抑制鹼-骨材反應之基礎研究:國立中央大學土木工程研究所,碩士論文。
ASTM C1260-94. (1994) Standard test method for potential alkali reactivity of aggregate ( mortar bar method ):Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C227-81. (1981) Test method for potential alkali reactivity of cement-aggregate combination ( mortar bar method ):Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C289-81. (1981) Potential reactive of aggregate ( chemical method ):Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C295-90. (1990) Standard guide for petrographic examination of aggregate for concrete:Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C490-86. (1986) Standard specification for apparatus for use in measurement of length change of hardened cement paste, mortar and concrete:Annual Book of ASTM Standards, Section 4, Vol. 04. 02.
Bayliss, P. (1978) Nontronite and ferruginous opal from the Peace River Iron Deposit in Alberta, Canada:Discussion:Canadian Mineralogist, Vol. 16, p. 119.
Berube, M. A. and Frenette, J. (1994) Testing concrete for AAR in NaOH and NaCl solution at 38℃ and 80℃:Cem. Conr. Composites, Vol 16, p. 189-198.
Blackwell, B. Q. and Pettifer, K. (1992) Alkali-reactivity of greywacke aggregates in Maentwrog Dam ( North Wales ):Mag. Concr. Res., Vol. 44, p. 255-264.
Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B. and Thomas, T. L. (1956):J. Am. Chem. Soc. Vol. 78, p.5063-5070.
Cole, W. F., Lancuck, C. J. and Sandy, M. J. (1981) Products formed in an aged concrete:Cem. Concr. Res., Vol. 11, p. 443-454.
Davies, G. and Oberholster, R. E. (1987) An interlaboratory test programme on the NBRI accelerated test to determine the alkali-reactivity of aggregates:National Building Research Institute, CSIRO, Special Report BOU 92, Pretoria, RSA, p. 16.
Davies, G. and Oberholster, R. E. (1987) Use of the NBRI accelerated test to evaluate the effectiveness of mineral admixtures in preventing the alkali-silica reaction:Cem. Concr. Res., Vol. 17, p. 97-107.
Deer, W. A., Howie, R. A. and Zussmann, J. (1963) Framework silicates:Rock-forming minerals, Vol. 4, p. 435.
Diamond, S. (1981) A review of alkali-silica reaction and expansion mechanisms II:reactive aggregate:Cem. Concr. Res., Vol. 6, p.549-560.
Dolar-Mantani, L. M. M. (1981) Undulatory extinction in quartz used for identifying potentially alkali-reactive rocks:Proc. 5th ICAAR, p. 1-12.
Duncan, M. A. G., Swenson, E. G., Gillot, J. E. and Foran, M. R., (1973) Alkali aggregate reaction in Nova Scotia. Pt. I. summary of a five-year study:Cem. Concr. Res., Vol. 3, p. 119-128.
Gillott, J. E. (1975) Alkali-aggregate reaction in concrete:Engineering Geology, Vol. 9, p.303-326.
Gillott, J. E. and Rogers, C. A. (1994) Alkali-aggregate reaction and internal release of alkalis:Mag. Concr. Res., Vol. 46, p. 99-112.
Gillott, J. E. and Swenson, E. G. (1973) Some unusual alkali-expansive aggregate:Engineering Geology, Vol. 7, p. 181-195.
Grattan-Bellew, P. E. (1986) Is undulatory extinction in quartz indicative of alkali-expansivity of granitic aggregate: Proc. 7th ICAAR, p. 434-439.
Grattan-Bellew, P. E. (1995) A critical review of accelerated ASR tests." Proc. 10th ICAAR, London, p. 27-38.
Grattan-Bellew, P. E., Beaudoin, J. J., and Vallee , V. G. (1998) Effect of aggregate particle size and composition on expansion of mortar bars due to delayed ettringite formation:Cem. Concr. Res., Vol. 28, p. 1147-1156.
Hadley, D. W. (1961) Alkali reactivity of carbonate rocks-expansion and dedolomitization:Proceeding Highway Research Board, Vol. 40, p. 462-474.
Hadley, D. W. (1964) Alkali reactivity of dolomitic carbonate rocks:Highw. Res. Rec., Vol. 45, p. 1-17.
Hansen, W. C. (1944) Studies relating to the mechanism by which the alkali aggregate reaction produces expansion in concrete:J. Am. Concr. Inst., Vol. 15, p. 213-227.
Hooten, R. D. (1991) New aggregtae alkali reactivity test methods:Ministry of Transportation, Ontario, Canada, MAT-91-14.
Idorn, G. M. (1967) Durability of concrete structures of Denmark ( A study of field behaviour and microscopic features ):Techn. University of Denmark, Copenhagen.
Jakobsen, U. H., Thaulow, N., and Johansen, V. (1992):Cem. Concr. Res., Vol.22, p. 1148-1160.
Jones, J. B. and Segnit, E. R. (1971) The nature of opal, I. Nomenc-lature and constituent phases:J. Geol. Soc. Australia, Vol. 18, p. 57-68.
Katayama, T. (1997) Petrography of alkali-aggregate reactions in concrete reactive minerals and reaction products:East Asia Alkali-Aggregate Reaction Seminar.
Kawamura, M., Takeuchi, K. and Sugiyama, A. (1996) Machanism of the influence of externally supplied NaCl on the expansion of mortars containing reactive aggregate:Mag. Concr. Res. Vol 48, p. 237-248.
Knudsen, T. and Thaulow, N. (1975) Quantitative microanalyses of alkali-silica gel in concrete:Cem. Concr. Res., Vol. 5, p. 443-454.
Laing, S. V., Scrivener, K. L. and Pratt, P. L., Proc. 9th ICAAR, London, England, p.579-586.
Ludmila, D. M. (1983) Handbook of concrete aggregates:Noyes Publications, Park Ridge, New Jersey, USA.
Meissner, H. S. (1941) Cracking in concrete due to expansive reaction between aggregate and high-alkali cement as evident in Parker Dam.:J. Am. Concr. Inst., Proc. Vol. 12:p. 549-568.
Mielenz, R. C. (1958) Petrographic examination of concrete aggregate to determine potential alkali reactivity:Highway Research Report 18-C, p. 29-35.
Murata, K. J. and Norman, M. B. (1976) An index of crystallinity for quartz:American Journal of Science, Vol. 276, p. 1120-1130.
Oberholster, R. E. (1983) Alkali reactivity of siliceous rock aggregates:diagnosis of the reaction testing of cement and aggregate and prescription of preventative measures:Alkali in Concrete Research and Practice, Copenhagen, Danish Concrete Association, p. 419-433.
Oberholster, R. E., and Davies, G. (1986) An accelerated method for testing the potential alkali reactivity of siliceous aggregates:Cem. Concr. Res., Vol. 16, p.181-189.
Shayan, A. (1992) Prediction of alkali reaction potential of some Australian aggregates and correlation with service performance:ACI Materials Journal, Vol. 89, p.13-23.
Shayan, A. (1997) Effects of NaOH and NaCl solutions and temperature on the behavior of specimens subjected to accelerated AAR tests:Cem. Concr. Res., Vol. 28, p.25-31.
Shayan, A. and Ivanusec, I. (1996) An experimental clarification of the association of delayed ettringite formation with alkali-aggregate reaction:Cem. Concr. Composites, Vol. 18, p.161-170.
Shayan, A. and Quick, G. (1989) Microstructure and composition of AAR products in conventional standard and new accelerated testing:Proc. 8th ICAAR, p.475-482.
Shayan, A., Diggins, R., Ritchie, D. F. and Westgate, P. (1987) Evaluation of western Australian aggregates for alkali-reactivity in concrete:Proc. 7th ICAAR, p.247-252.
Shayan, A., Ivanusec, I. and Westgate, P. L. (1988) Accelerated testing of some Australian and overseas aggregates for alkali-aggregate reactivity:Cem. Concr. Res. Vol. 18, p. 843-851.
Sibbick, R. G. and Page, C. L., Proc. 10th ICAAR, Melbourne, Australia, p.822.
Stanton, T. E. (1940) The expansion of concrete through reaction between cement and concrete:Proc. American Soc. Civil Engineers, Vol.66, p. 1781-1811.
Stanton, T. E. (1942) Expansion of concrete through reaction between cement and concrete:American Soc. Chem. Engineers Trans., Vol.107, p. 54-84.
Thanlow, N., Jakobsen, U. H. and Clark, B. (1996) Composition of alkali silica gel and ettringite in concrete railroad ties: SEM-EDX and X-ray diffraction analyses:Cem. Concr. Res., Vol. 26, p. 309-318.
Van Aardt, J. H. P. and Visser, S. (1977) Calcium hydroxide attack on felspars and clays:possible relevance to cement-aggregate reactions:Cem. Concr. Res., Vol. 7, p. 643-648.
Van Aardt, J. H. P. and Visser, S. (1977) Formation of hydrogarnets:calcium hydroxide attack on clays and feldspars:Cem. Concr. Res., Vol. 7, p. 39-44.
Van Aardt, J. H. P. and Visser, S. (1978) Reaction of Ca(OH)2 and of Ca(OH)2+CaSO4·2H2O at various temperatures with feldspars in aggregates in aggregate used for concrete making:Cem. Concr. Res., Vol. 8, p. 677-681.
Wigum, B. J. and French, W. J. (1996) Sequential examination of slowly expanding alkali-reactive aggregate in accelerated mortar bar testing:Mag. Concr. Res., Vol 48, p. 281-292.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔