跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張祉祥
研究生(外文):Zih Xiang Chang
論文名稱:都市垃圾焚化底灰燒結資源化之研究
論文名稱(外文):Study on the Sintering of Municipal Solid Waste Incineration Bottom Ash for Construction Materials
指導教授:王鯤生
指導教授(外文):Kuen-Sheng Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:150
中文關鍵詞:都市垃圾焚化底灰燒結酸中和當量碳酸鈣
外文關鍵詞:Bottom AshSinterAcid Neutralization CapacityCalcium Carbonate
相關次數:
  • 被引用被引用:41
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
  台灣地區規劃於民國93年前興建完成36座焚化廠,其中包括環保署所提案之21座,及15座採用BOO或BOT方式興建之焚化廠,屆時將有大量焚化灰渣必須妥善處理、處置及資源化。焚化灰渣資源化勢必成為資源循環型社會重要之廢棄物處理方法。
  本研究將底灰篩分為粒徑小於1.41mm之細料(F-Ash),及粒徑介於4.76-1.41mm經粉碎後之粗料(P-Ash)兩部分。各於400-1000℃予以成形燒結,分別調查影響燒結之操作條件、燒結體之材料特性,以及重金屬之溶出特性,用以探討焚化底灰燒結材料化之可行性。實驗結果顯示,粗灰部分之TCLP溶出液pH值為6.11,細灰部分高達10.76,屬強鹼性。燒結後細灰pH介於10.04-11.49、粗灰介於7.49-11.26,隨燒結溫度上升其pH呈上升之趨勢,亦即酸中和當量隨溫度增加而增加。整體而言,燒結後之抗壓強度較原灰加壓成形者小,約介於500-550kgf/cm2,且不論粗灰或細灰,兩者均隨溫度由400℃增至600℃而有所遞減。
  底灰燒結之問題點包括於1000℃高溫燒結時,玻璃質熔解造成燒結體變形;800℃以上燒結時,產生鋁金屬及鈣鹽析出現象,造成燒結體崩解。碳酸鈣於650℃分解產生大量CO2,亦為燒結體崩解之主因之一。綜合燒失量、體積變化、吸水率、健度、抗壓強度及容積密度等條件,顯示磁選及去除夾雜物後之底灰,於400-600℃之溫度範圍內,可得符合中國國家標準透水磚骨材之規格。
The decreasing availability of landfill sites, the growing amount of municipal solid waste (MSW), and the increasing disposal costs have hastened efforts to adopt incineration technologies and energy recovery strategies. By the year 2004, the completion of 36 MSW incinerators will generate more than 4000 tons incineration ashes each day, which has to be properly treated, disposed of, or recovered.
Recognizing the trend toward more usage of bottom ash as constructional materials, the author investigated the feasibility of recovering bottom ash as aggregates, by sintering size-fractioned MSW incinerator bottom ashes (particle size less than 1.41 mm and between 4.76-1.41 mm) at 400-1000 degree C for 60-240 min, to determine their sintered characteristics such as compressive strength, heavy metal leachability, and principal material properties. The results indicate that the pH of the TCLP leachate for the fine and the coarse ashes, ranging from 10.04-11.49, and from 7.49-11.26, respectively, showed a decreasing trend with increasing sintering temperature. Correspondingly, the acid-neutralization capacity for both ashes decreased with increasing sintering temperature. In addition, for both ashes, the compressive strength of the sintered monoliths, ranging from 500-550 kgf/cm2, slightly decreased when the sintering temperature was increased from 400 degree C to 600 degree C. Problems such as deformation may result from the melting of glassy substance in the ash when the bottom ash was sintered at higher than 1000 degree C. Moreover, when sintering between 800 to 1000 degree C, the sintered bottom ash may be destroyed due to the formation of calcium salts and/or aluminum. The decomposition of calcium carbonate at 650degree C, releasing significant amount of carbon dioxide, may also cause the destruction of the monolith.
Based on considerations of the loss on ignition, volume change, water adsorption, soundness, bulk density, and the compressive strength of the sintered ash, the general results from the experiments suggest that acceptable aggregates meeting Chinese National Standards(CNS) for permeable block can be developed by sintering the bottom ash between 400 to 600 degree C after removing its coarse impurities.
第一章 前言
1-1研究緣起
1-2研究內容
第二章 文獻回顧
2-1焚化底灰來源及特性
2-1-1焚化底灰之物理特性
2-1-2焚化底灰之化學組成
2-1-3焚化底灰溶出特性與酸中和能力
2-1-4焚化底灰物種型態
2-1-5結語
2-2焚化灰渣再利用
2-2-1焚化底灰再利用現況
2-2-2焚化底灰再利用注意要點
2-2-3結語
2-3底灰資源化技術
2-3-1燒結資源化技術
2-3-2熔融資源化技術
2-3-3直接材料化技術
2-3-4固化資源化處理技術
2-3-5結語
2-4燒結理論
2-4-1物質移動
2-4-2緻密化-氣孔之改變
2-4-3異常粒子成長
2-4-4影響燒結之工程參數
2-4-5結語
2-5固化體長期性能測試
第三章 研究設備與方法
3-1研究流程
3-2研究材料
3-2-1底灰來源
3-2-1底灰前處理及基本性質分析
3-3實驗流程
3-3-1實驗配置
3-4研究設備及方法
3-4-1實驗設備
3-4-2分析項目及方法
第四章 結果與討論
4-1焚化底灰基本特性分析
4-1-1焚化底灰之物理特性
4-1-2焚化底灰化學組成與物種型態
4-1-3焚化底灰重金屬總量及毒性溶出試驗
4-1-4結語
4-2燒結條件篩選試驗
4-2-1成形壓力之影響
4-2-2燒結溫度之影響
4-2-3結語
4-3焚化底灰燒結試體物理性質變化
4-3-1燒失量變化
4-3-2體積變化
4-3-3健度及吸水率變化
4-3-4抗壓強度
4-3-5顆粒微結構變化
4-3-6燒結體密度及孔隙變化
4-3-7結語
4-4焚化底灰燒結試體化學性質變化
4-4-1重金屬總量變化
4-4-2毒性溶出試驗
4-4-3燒結程序pH值與酸中和當量變化
4-4-4燒結前後物種變化
4-4-5熱重損失變化
4-4-6結語
4-5綜合探討
4-5-1孔隙特性與抗壓強度
4-5-2酸中和能力與物種變化
4-5-3結語
第五章 結論與建議
5-1結論
5-2建議
1. Alba, N., Gasso, S., Lacorte, T. Baldasano, J.M., “Characterization of Municipal Solid Waste Incineration Residues from Facilities with Different air Pollution Control Systems”, Journal of the Air & Waste Management Association, Vol. 47, pp.1170-1179 (1997).
2. Bagchi, A., ASCE Member, Sopcich, D., “Characterization of MSW Incinerator Ash”, Journal of Environmental Engineering, Vol.115, No.2, pp.447-452 (1989).
3. Berg, E.R., Neal, J.A., “Municipal Solid Waste Bottom Ash as Portland Cement Concrete Ingredient”, Journal of Materials in Civil Engineering, August, pp.168-173 (1998).
4. Berg, E.R., Neal, J.A., “Concrete Masonry Unit Mix Designs Using Municipal Solid Waste Bottom Ash”, ACI Materials Journal, July-August, pp.470-479 (1998a).
5. Eighmy, T.T., Crimi, D., Zhang, S.H.X., Gress, D.L., “Influence of Void Change, Cracking, and Bitumen Aging on Diffusional Leaching Behavior of Pavement Monoliths Constructed with MSW Combustion Bottom Ash”, Transportation Research Record, No.1468, pp.42-48 (1995).
6. Goldin, A., Bigelow, C., Veneman, P., L.M., “Concentration of Metals in Ash from Municipal Solid Waste Combusters”, Chemosphere, Vol.24, No.3, pp.271-280 (1992)
7. Hester, R.E., Harrison, R.M., “Waste Incineration and the Environment”, The Royal Society of Chemistry, pp.49 (1994).
8. Johnson, C.A., Brandenberger, S., Baccini, P., “Acid Neutralizing Capacity of Municipal Waste Incinerator Bottom Ash”, Environmental Science & Technology, Vol.29, No.1, pp.142-147 (1995).
9. Johnson, C.A., Kersten, M., Ziegler, F., Moor, H.C., “Leaching Behavior and Solubility — Controlling Solid Phases of Heavy Metals in Municipal Solid Waste Incinerator Ash”, Waste Management, Vol.16, No.1-3, pp.129-134 (1996).
10. Johnson, C.A., Richner, G.A., Vitvar, T., Schittli, N., Eberhard, M., “Hydrological and Geochemical Factors Affecting Leachate Composition in Municipal Solid Waste Incinerator Bottom Ash Part Ⅰ: Thy Hydrology of Landfill Lostorf, Switzerland”, Journal of Contaminant Hydrology, Vol.33, pp.361-376 (1998).
11. Kersten, M., Moor, H.C., Johnson, C.A., “Speciation of Trace Metals in Leachate form a MSWI Bottom Ash Landfill”, Applied Geochemistry, Vol.12, pp.675-683 (1997).
12. Kirby, C.S., Rimstidt, J.D., “Mineralogy and Surface Properties of Municipal Solid Waste Ash”, Environmental Science & Technology, Vol.27, No.4, pp.652-660 (1993).
13. Kosson, D.S., van der Sloot, H., Holmes, T., Wiles, C., “Leaching Properties of Untreated and Treated Residues Tested in The USEPA Program for Evaluation of Treatment and Utilization Technologies for Municipal Waste Combustor Residues”, Waste Materials in Construction, pp.119-134 (1991).
14. Kosson, D.S., van der Sloot, H.A., Eighmy, T.T., “An Approach for Estimation of Contaminant Release During Utilization and Disposal of Municipal Waste Combustion Residues”, Journal of Hazardous Materials, Vol.47, pp.43-75 (1996).
15. LaGrega, M.D., Buckingham, P.L., Evans, J.C., “Hazardous Waste Management”, McGraw-Hill (1994).
16. Li, H., Shen, X.Z., Sisk, B., Orndorff, W., Li, D., Pan, W.P., Riley, J.T., “Studies of Fly Ash Using Thermal Analysis Techniques”, Journal of Thermal Analysis, Vol.49, pp.943-951 (1997).
17. Means, J.L., Smith, L.A., Nehring, K.W., Brauning, S.E., Gavaskar, A.R., Sass, B.M., Wiles, C.C., Mashni, C.I., “The Application of Solidification / Stabilization to Waste Materials”, Lewis Publishers, (1995).
18. Meima, J.A., Comans, R.N.J., “Application of Surface Complexation / Precipitation Modeling to Contaminant Leaching from Weathered Municipal Solid Waste Incinerator Bottom Ash”, Environmental Science & Technology, Vol.32, No.5, pp.688-693 (1998).
19. Meima, J.A., Comans, R.N.J., “Geochemical Modeling of Weathering Reactions in Municipal Solid Waste Incinerator Bottom Ash”, Environmental Science & Technology, Vol.31, No.5, pp.1269-1276 (1997).
20. Mellor, J.W., D.Sc., F.R.S., “A Comprehensive Treatise on Inorganic and Theoretical Chemistry”, Vol.Ⅲ, LONGMANS.
21. Morf, L.S., Brunner, P.H., “The MSW Incinerator as a Monitoring Tool for Waste Management”, Environmental Science & Technology, Vol.32, No.12, pp.1825-1831 (1998)
22. Nowok, J. W., Benson, S. A., Jones, M. L. and Kalmanovitch, D. P., “Sintering Behaviour and Strength Development in Various Coal Ashes”, Fuel, Vol. 69, pp. 1020-1028 (1990)
23. Pera, J., Coutaz, L., Ambroise, J., Chababbet, M., “Use of Incinerator Bottom Ash In Concrete”, Cement and Concrete Research, Vol.27, No.1, pp.1-5 (1997).
24. Pfrang-Stotz, G., Schneider, J., “Comparative Studies of Waste Incineration Bottom Ashes from Various Grate and Firing Systems, Conducted with Respect to Mineralogical and Geochemical Methods of Examination”, Waste Management & Research, Vol.13, pp.273-292 (1995).
25. Rashid, R.A., Frantz, G.C., “MSW Incinerator Ash as Aggregate in Concrete and Masonry”, Journal of Materials in Civil Engineering, Vol.4, No.4, pp.353-368 (1992).
26. Reimann, D.O., “Heavy Metal in Domestic Refuse and Their Distribution in Incinerator Residues”, Waste Management & Research, Vol.7, pp.57-62 (1989).
27. Stegemann, J.A., Schneider, J., “Leaching Potential of Municipal Waste Incinerator Bottom Ash As a Function Particle Size Distribution”, Waste Materials in Construction, pp.135-143 (1991).
28. Uerkvitz, R., Goetz, D., “Statistical Estimation of Chemical Characteristics for Dispersed Solid Matter”, Waste Management & Research, pp.83-95 (1998).
29. Wainwright, P.J., Robery, P., “Production and Properties of Sintered Incinerator Residues as Aggregate for Concrete”, Waste Materials in Construction, pp.425-432 (1991).
30. Wasserman, R., Bentur, A., “Effect of Lightweight Fly Ash Aggregate Microstructure on The Strength of Concrete”, Cement and Concrete Research, Vol.27, No.4, pp.525-537 (1997).
31. Wiles, C.C., “Municipal Solid Waste Combustion Ash: State-of-the-knowledge”, Journal of Hazardous Materials, Vol.47, pp.325-344 (1996).
32. Wunsch, P., Greilinger, C., Bieniek, D., Kettrup, A., “Investigation of The Binding of Heavy Metals in Thermally Treated Residues from Waste Incineration”, Chemosphere, Vol.32, No.11, pp.2211-2218 (1996).
33. Yan, J., Moreno, L., Neretnieks, I., “Neutralizing Processes in Leaching of Solid Waste: Modeling of Interactions Between Solid Waste and Strong Acid”, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substance & Environmental Engineering, Vol.33, No.6, pp.923-950 (1998).
34. Yang, G.C.C., “Durability Study of a Solidified Mercury Containing Sludge”, Journal of Hazardous Materials, Vol.34, No.2, pp.217-223 (1993).
35. 王鯤生、江康鈺,「添加劑對垃圾焚化灰渣與下水污泥焚化灰渣熔融操作溫度之影響」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,台北市,pp.113-130 (1996)。
36. 王鯤生、孫常榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分布及溶出特性之探討」,第十三屆廢棄物處理技術研討會論文集,高雄市,pp.463-469 (1998)。
37. 伍祖璁,黃錦鐘(譯),German, R. M.(著),「粉末冶金」,高立圖書公司,台北(1996)。
38. 何啟華,「垃圾焚化灰燼之工程特性與應用」,國立中央大學土木工程研究所碩士論文(1994)。
39. 李文成,「焚化底灰之大地工程特性研究」,國立臺灣大學土木工程研究所碩士論文(1998)。
40. 李釗、江少鋒、郭文田,「都市垃圾焚化灰渣作為混凝土細骨材之可行性研究」,一般廢棄物焚化灰渣資源化技術與實務研討會,台北市,pp.91-112 (1996)。
41. 李清華、王興濬、林昌銘,「以多重毒性特性溶出試驗(MTCLP)研究廢棄物之長期穩定性」,工業污染防治,第24期,第4卷,pp.155-172 (1992)。
42. 林鴻祺、江東法、廖明村,「一般廢棄物焚化灰渣處理處置及再利用技術探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,台北市,pp.69-90 (1996)。
43. 高思懷、王鯤生,「垃圾焚化灰渣利用之研發建制及推廣計畫(第一年)」,行政院環保署委託研究計畫報告,EPA-87-E3H1-03-01 (1998)。
44. 張旭彰,「都市焚化灰渣熔融處理操作特性之研究」,國立中央大學環境工程研究所碩士論文(1992)。
45. 張祖恩、蔡敏行,「灰渣中有害成份富集及資源化研究」,行政院國家科學委員會專題研究計畫成果報告(1996)。
46. 張祖恩、蔡敏行、蔡尚林、林健榮、張益國、蔡樹鴻「台灣地區都市垃圾焚化灰渣物化組成與溶出特性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,台北市,pp.227-246 (1996a)。
47. 黃錦明、楊萬發,「焚化灰渣管理對策」,環境工程會刊,第五卷,第二期,pp.21-28 (1994)。
48. 楊金鐘、吳裕民「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會,台北市,pp.43-49(1996)。
49. 葉宗智,「垃圾焚化飛灰粒徑對燒結效果之研究」,國立中央大學環境工程研究所碩士論文(1997)。
50. 廖錦聰,「從日本的經驗談台灣焚化灰渣資源化方向」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,台北市,pp.29-42 (1996a)。
51. 廖錦聰、徐文慶、張蕙蘭、黃契儒,「焚化灰渣資源化研究(研究報告)」,工業技術研究院計畫報告(1996)。
52. 劉宗諭,「焚化飛灰在負壓氣氛下之燒結特性」,國立中央大學環境工程研究所碩士論文(1998)。
53. 劉定忠、黃進修、馮金源、鍾麗娟,「有害事業廢棄物水泥/石灰系固化體長期性能測試(2/2)」,行政院環保署委託研究計畫報告,EPA-84-13H1-09-06 (1995)。
54. 蔡樹鴻,「都市垃圾焚化灰渣資源化處理之基礎研究」,國立成功大學資源工程學所碩士論文(1997)。
55. 賴聰華,「圾焚化灰燼特性分析及其固化處理之探討」,國立臺灣大學環境工程研究所碩士論文(1990)。
56. 「有害事業廢棄物中間處理技術」,公民營廢棄物清除處理訓練班(1998)。
57. 「有害事業廢棄物處理技術概論」,公民營廢棄物清除處理訓練班(1998)。
58. 永澤正行,山內泉,村木宏,「都市ごみ燒卻灰の有效利用への取り組み(第1報)」,都市清掃,第48卷,第206號,pp.29-36(1995)。
59. 村田昌夫,長尾光義,「船橋市における燒卻殘渣の有效利用-燒卻不燃殘渣の骨材化及び燒卻灰による透水性ブロックの製造實驗」,都市清掃,第48卷,第208號, pp. 48-54(1995)。
60. 阪本明彥,阪谷正人,「ごみ燒卻灰前處理實驗」,都市清掃,第51卷,第225號,pp.400-405 (1998)。
61. 酒井伸一,「一般廢棄物燒卻殘渣の性狀とその溶出特性」,都市清掃,第48卷,第208號,pp.438-444 (1995)。
62. 都市と廢棄物編輯部,「灰熔融處理事業の民營化第一號-產廢燒卻殘渣のスラグ骨材化と再生事業」,都市と廢棄物,Vol.28, No.2, pp.47-52 (1998)。
63. 網本博孝,木村哲雄,「燒卻の殘渣處理技術」,環境技術,Vol.27,No.3,pp.214-220 (1998)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top