跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林立偉
研究生(外文):Li-Wei Lin
論文名稱:墾丁地區氣膠粒徑分布與氣象因子對散光係數影響之研究
論文名稱(外文):Aerosol size distribution and the effects of meteorological factors on aerosol scattering coefficient in Kenting area.
指導教授:李崇德李崇德引用關係
指導教授(外文):Chung-Te Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:145
中文關鍵詞:氣膠粒徑分布散光係數氣象因子後推氣流軌跡大氣傳輸
外文關鍵詞:aerosol size distributionscattering coefficientmeteorological factorsback trajectoryatmospheric transport
相關次數:
  • 被引用被引用:3
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣膠對大氣輻射同時具有散射或吸收的能力,影響全球氣候變化,因此對全球環境變遷具有重大的影響。本研究於民國87年10月至12月在墾丁地區進行將近兩個半月的氣膠採樣,使用氣膠粒徑計數儀量測氣膠粒徑分布,同時以積分散光儀量測氣膠散光係數,並以氣象塔測定採樣地點的風向、風速、相對溼度等氣象資料。主要的目的是探討在東北季風吹拂下台灣背景大氣氣膠的物理特性,以及氣象因子對氣膠物理特性的影響,並結合氣流軌跡線分析與化學物種資料,探討氣流對氣膠的傳輸與氣膠散光係數的影響。
研究結果顯示墾丁地區氣膠的綠光散光係數日平均值範圍介於0.009~0.127km-1之間,平均值為0.046km-1。利用米氏理論(Mie theory)推估的氣膠散光係數與實測值相關係數平方達0.90,理論值約較實測值高估4.6%。本研究以散光儀內加熱器的切換探討加熱的環境對氣膠散光係數量測的影響,結果顯示:當加熱器打開時,理論散光係數值比實測值高估8.8%。由米氏理論計算氣膠散光係數粒徑分布顯示,在東北季風盛行的季節,超微米及次微米氣膠對墾丁地區散光係數的貢獻率分別為44%及56%。
氣膠散光係數的變動與氣象因子間有密切的關係,當相對溼度低於75%時,散光係數在風速7ms-1上下各呈正比與反比的關係;相對溼度高於75%時,散光係數與風速呈正比關係;當風向為西北及西南風時,有較高的氣膠散光係數。特殊污染案例分析顯示特定污染源對墾丁地區散光係數短時間內的變動具有一定程度的影響,氣膠散光係數的變動主要來自於次微米氣膠的貢獻。
影響採樣期間主要的天氣型態為微弱東北季風、副熱帶太平洋高壓、盛行東北季風、熱帶氣旋外圍環流加上東北季風及鋒面過境等五類。配合氣流軌跡線與污染來源推估得知﹕當天氣型態為副熱帶太平洋高壓時,來自於西南微弱海風及北方微弱陸風會帶來較高濃度的二次污染物質與碳成份,散光係數有最大值,次微米氣膠佔總散光係數的比率高達83%;當天氣型態為盛行東北季風時,東北方強烈海風的氣流傳輸作用,海鹽佔總氣膠質量濃度有較高的比率,超微米及次微米氣膠佔總散光係數的比率相近。結合天氣型態、化學物種與氣膠散光係數的分析結果顯示,在微弱東北季風或盛行東北季風天氣型態下,氣膠散光係數與硫酸根離子濃度變化有良好的一致性。
Aerosol particles play an important role in global environmental change due to their scattering and absorption of solar radiation received by the earth. In this study, atmospheric aerosols were collected at Kenting National Park from October to December in 1998. An aerosol collection system consisted of aerosol spectrometer to acquire aerosol size distribution, an Integrated Nephelometer to measure aerosol scattering coefficients(ssp), and a weather station to collect the meteorological factors of the site. The objectives of this study are to characterize the physical properties of the background aerosols in Taiwan during the prevailing northeast monsoon and to investigate the effects of meteorological factors on the physical properties. A backward trajectory analysis combined with chemical speciation on aerosols were employed to evaluate the effects of the airflow transport on ssp.
The results show the average ssp of green wavelength was 0.046 km-1 with daily averages ranged from 0.009 to 0.127 km-1 during the sampling period. The ssp was found a high correlation (R2 = 0.9) with the corresponding value calculated from Mie theory (Bohren and Huffman, 1983). The calculated ssp was 4.6% higher than the measured value. A discussion of the on/off heater effect on ssp showed the calculated ssp from aerosol spectrometer was 8% higher than that measured from the Nephelometer. As the calculated ssp showed, supermicron and submicron aerosols contributed 44% and 56% during the prevailing northeast monsoon at Kenting site.
The variation of ssp was highly correlated with meteorological factors. For relative humidity below 75%, the ssp was decreased with an increasing wind speed as wind speed lower than 7ms-1, however, the trend was opposite as wind speed higher than 7ms-1. In contrast, as relative humidity higher than 75%, the ssp increased with an increasing wind speed. A higher ssp was found as the wind came from northwest and southwest. An increase of ssp was observed with the enhancement of submicron aerosols as an event was noted in the nearby area.
During the sampling period, the synoptic weather patterns can be classified into five major types, i.e., weak northeast monsoon, Pacific high, prevailing northeast monsoon, the outer circulation of the tropical cyclone, and cold front. As eight-hour backward trajectory (Dharmavaram, 1987) shows, a high ssp with more secondary aerosols is usually associated with weak southwesterly flow passing over the sea and weak northeasterly flow from the land under Pacific high. In this weather type, 83% of ssp was found to be contributed from submicron aerosols. As the weather pattern shifted to prevailing northeast monsoon, the strong northeasterly wind from the sea brought more sea-salt aerosols to the site. The fraction of ssp contributed from supermicron and submicron aerosols was approximately the same. Combining weather patterns, chemical species of aerosols, and measured ssp showed ssp and sulfate were in a good agreement as the weather pattern was weak or prevailing northeast monsoon.
目錄
圖目錄 C
表目錄 E
第一章 前言 1
1.1研究動機 1
1.2研究目的 1
第二章 文獻回顧 3
2.1氣膠光學特性的發展及定義 3
2.1.1氣膠光學特性的發展 3
2.1.2氣膠光學係數的定義 5
2.2 能見度與氣膠散光係數、物化組成的關係 7
2.2.1能見度與消光係數的關係7
2.2.2氣膠散光係數與化學組成8
2.2.3散光係數與氣膠物理組成10
2.3海岸氣膠的物理及化學特性12
2.3.1海岸地區的氣膠物理特性12
2.3.2海岸地區氣膠化學特性 14
2.4積分散光儀的應用 17
2.4.1散光係數理論數學模式 17
2.4.2散光儀的積分幾何模式 17
2.4.3積分散光儀在應用上的誤差 19
2.5散光係數的估算模式 21
2.5.1 ELSIE消光模式21
2.6氣象因子對氣膠散光係數的影響 25
2.6.1相對溼度對散光係數影響的估算模式 25
2.6.2風速對散光係數的影響 27
2.6.3天氣系統及氣流軌跡對散光係數的影響 28
第三章 研究方法及步驟 32
3.1 採樣地點及時間32
3.2 量測方法 36
3.2.1 氣膠粒徑分布 36
3.2.2氣膠的散光係數 38
3.2.3氣象因子的量測 41
3.3量測數據分析 42
3.3.1 氣膠粒徑分布 42
3.3.2氣膠散光係數 42
3.3.3 氣膠散光係數的理論模式42
3.3.4 氣流軌跡的分析 43
3.3.5散光係數與氣象因子的分析 43
3.4採樣儀器的保養與校正 44
3.4.1 PMS的校正與維護 44
3.4.2散光儀的校正與維護 45
3.4.3氣象塔的操作與維護 47
第四章 結果與討論 48
4.1採樣結果及數據 49
4.1.1氣膠綠光散光係數、數目濃度、體積濃度 49
4.1.2細粒氣膠數目濃度與密度 53
4.1.3理論散光係數與實測散光係數的比較 57
4.1.4氣膠散光係數與體積濃度的關係 60
4.1.5氣膠體積濃度與散光係數粒徑分布 64
4.1.6一日間氣膠散光係數與體積濃度的變化 66
4.2氣象因子與散光係數 68
4.2.1氣象資料 68
4.2.2影響墾丁地區的主要天氣型態 71
4.2.3風速對散光係數的影響 72
4.2.4風向對散光係數的影響 74
4.2.5散光係數與相對溼度的關係 78
4.2.6加熱環境中相對溼度與散光係數的關係 82
4.3影響氣膠散光係數的個案探討 86
4.3.1風速對散光係數影響的個案探討 86
4.3.2特殊污染事件分析 90
4.3.3天氣型態與氣流軌跡分析 99
4.4天氣型態、氣象因子與化學物種對散光係數的影響 115
4.4.1不同天氣型態下氣流軌跡對氣膠的傳輸 115
4.4.2相同天氣型態下散光係數的變化與氣象因子及化學物種的關係 118
4.4.3相同硫酸根離子濃度之下,散光係數變化的個案探討 132
第五章 結論及建議 137
5.1結論 137
5.2建議 139
參考文獻 140
圖目錄
圖2.1積分散光儀的幾何積分模式(Anderson et al. ,1996) 18
圖3.1.1 研究方法及實驗流程 33
圖3.1.2 墾丁採樣站地理位置圖34
圖3.1.3 墾丁採樣點詳細地理位置圖 36
圖3.2.1 PMS氣流系統剖面圖 37
圖3.2.3散光儀剖面圖 38
圖3.2.4節波器示意圖 39
圖4.1.1理論及實測散光係數日平均值逐日變化 58
圖4.1.2逐時散光係數實測值與理論散光係數的關係(N=1133) 58
圖4.1.3散光儀heater開啟時逐時散光係數理論值與實測值的關係(N=660) 59
圖4.1.4散光儀heater關閉時逐時散光係數理論值與實測值的關係(N=576) 60
圖4.1.5散光儀heater開啟時氣膠散光係數與體積濃度的關係(N=603) 61
圖4.1.6民國87年10月6日11至22時平均氣膠體積濃度粒徑分布61
圖4.1.7民國87年10月28日18時至10月29日7時平均氣膠體積濃度粒徑分布 62
圖4.1.8 散光儀heater關閉時氣膠散光係數與體積濃度的關係(N=543) 63
圖4.1.9整體採樣期間逐時氣膠散光係數與體積濃度的關係(N=1146) 63
圖4.1.10平均逐時氣膠體積濃度粒徑分布(N=1146,上下誤差線代表標準偏差) 65
圖4.1.11平均逐時理論氣膠散光係數粒徑分布(N=1146,上下誤差線代表標準偏差) 65
圖4.1.12一日內各小時平均氣膠散光係數與體積濃度逐時變化(採用散光儀heater關閉時進行採樣的資料) 67
圖4.1.13一日間各小時平均風速與相溼度逐時變化(採用散光儀heater關閉時進行採樣的資料) 67
圖4.2.1採樣期間逐時氣膠散光係數與風速的關係,誤差柱狀代表標準偏差值(N=1155) 73
圖4.2.2採樣期間逐時風速與風向的關係(N=1034) 75
圖4.2.3採樣期間散光係數與風向的關係(N=1059) 75
圖4.2.4採樣期間氣膠體積濃度與風向的關係(N=1044) 76
圖4.2.5散光儀加熱器關閉進行採樣時,散光係數與風速及相對溼度的相關曲面(N=200,曲面近似方法是先取各資料區間散光係數的平均值,再將各平均值以5階多項式最小平方法近似而得,X,Y,Z軸分別代表風速、相對溼度及散光係數) 80
圖4.2.6散光儀加熱器關閉進行採樣時,散光係數與風速及相對溼度的相關曲面(原圖4.2.5逆時針水平旋轉90度,X,Y,Z軸分別代表相對溼度、風速及散光係數) 81
圖4.2.7散光儀加熱器開啟進行採樣時,散光係數、風速與相對溼度的關(N=484),X,Y,Z軸分別代表相對溼度、風速與散光係數。 84
圖4.2.8民國87年10月5日0~13時採樣地區相對溼度與氣膠散光係數逐時變化 85
圖4.2.9民國87年10月5日0~13時採樣地區氣膠數目及體積濃度逐時變化 85
圖4.3.1民國87年12月5日7~11時氣膠體積濃度粒徑分布隨風速的變化 87
圖4.3.2民國87年12月5日7~11時散光係數粒徑分布隨風速的變化 87
圖4.3.3民國87年11月9日6~16時氣膠體積濃度粒徑分布隨風速的變化 89
圖4.3.4民國87年11月9日6~16時散光係數粒徑分布隨風速的變化 89
圖4.3.5旅遊活動平均氣膠散光係數粒徑分布 94
圖4.3.6露天燃燒活動平均氣膠散光係數粒徑分布 95
圖4.3.7助航台除草整地工程平均氣膠散光係數粒徑分布 95
圖4.3.8助航台噴灑農藥時氣膠散光係數粒徑分布 96
圖4.3.9未知污染源事件平均氣膠散光係數粒徑分布 97
圖4.3.10污染事件時段平均氣膠散光係數粒徑分布 98
圖4.3.11非污染事件時段平均氣膠散光係數粒徑分布(N=1072) 98
圖4.3.12典型微弱東北季風天氣型態的氣流軌跡(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。 100
圖4.3.13典型副熱帶太平洋高壓天氣型態的氣流軌跡(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。 101
圖4.3.14東北季風天氣型態的典型氣流軌跡(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。 102
圖4.3.15東北季風天氣型態的典型氣流軌跡(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。 103
圖4.3.16東北季風天氣型態的典型氣流軌跡(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。104
圖4.3.17熱帶氣旋外圍環流加東北季風天氣型態的典型氣流軌跡線(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。 105
圖4.3.18 鋒面過境時典型氣流軌跡(軌跡線為回推8小時前的氣流傳輸,每條軌跡線間隔3小時,第1條軌跡線到達時間為0時,以下依次類推)。 106
圖4.3.19微弱東北季風氣流軌跡型態散光係數粒徑分布(N=240)107
圖4.3.20副熱帶太平洋高壓氣流軌跡型態散光係數粒徑分布(N=72) 108
圖4.3.21盛行東北季風氣流軌跡型態下,氣流軌跡線一半以上通過陸地時氣膠散光係數粒徑分布(N=552)109
圖4.3.22盛行東北季風氣流軌跡型態下,氣流軌跡線一半以上都未通過陸地時氣膠散光係數粒徑分布(N=216) 110
圖4.3.23盛行東北季風氣流軌跡型態下,強烈東北季風氣流軌跡線氣膠散光係數粒徑分布(N=72) 111
圖4.3.24熱帶氣旋外圍環流加東北季風氣流軌跡型態下氣膠散光係數粒徑分布(N=144) 112
圖4.3.25鋒面過境氣流軌跡類型下氣膠散光係數粒徑分布(N=96) 113
圖4.4.1微弱東北季風天氣型態氣膠散光係數與硫酸根離子濃度逐日變化119
圖4.4.2東北季風天氣型態散光係數與硫酸根離子質量濃度逐日變化 121
表目錄
表2.1各國學者在不同地區量測散光係數sSP與氣膠散光係數成長比率f(RH) 14
表2.2各國學者研究硫酸根、硝酸根及銨根離子質量濃度粒徑分布 15
表2.3常見化學物種折射率 22
表2.4常見化學物種假設的形式、轉換因子和密度 23
表4.1.1墾丁地區民國87年氣膠綠光散光係數、數目濃度及體積濃度日平均值 51
表4.1.2墾丁地區採樣期間每日8~16時PM2.5細粒氣膠質量濃度、體積濃度與密度逐日變化 55
表4.2.1墾丁地區採樣期間氣象資料 69
表4.2.2採樣期間影響墾丁地區主要天氣類型的特性概述 71
表4.2.3各種天氣類型之下,氣膠的散光係數、數目濃度、體積濃度的平均值與標準偏差 72
表4.2.4各種乾燥表面產生揚塵所需最小風速(Clements et al., 1963) 74
表4.3.1各類特殊污染事件發生時數及其氣膠散光係數、數目與體積濃度小時平均值比較 91
表4.3.2各污染事件發生日散光係數值與相關氣象條件 93
表4.3.3墾丁採樣期間5個主要天氣類型的典型氣流軌跡線特徵及散光係數粒徑分布特性 114
表4.4.1墾丁地區標準天氣型態、氣流軌跡、散光係數、碳成份及利用污染來源推估方法推估出海鹽與二次反應氣膠佔質量濃度的百分比 117
表4.4.11熱帶氣旋外圍環流加東北季風天氣型態下,氣膠數目與體積濃度分布 123
表4.4.2微弱東北季風天氣型態下氣膠散光係數、相對溼度、氣流軌跡特性及化學物種質量濃度的逐日變化 125
表4.4.3副熱帶太平洋高壓天氣型態下氣膠散光係數、相對溼度、氣流軌跡特性及海鹽佔水溶性離子質量濃度比率的逐日變化 126
表4.4.4盛行東北季風天氣型態下氣膠散光係數、相對溼度、氣流軌跡特性及化學物種質量濃度的逐日變化 127
表4.4.5熱帶氣旋外圍環流加東北季風天氣型態下氣膠散光係數、相對溼度、氣流軌跡特性及化學物種質量濃度的逐日變化 130
表4.4.6鋒面過境天氣型態下氣膠散光係數、相對溼度、氣流軌跡特性及化學物種質量濃度的逐日變化 131
表4.4.7 11月4、23及28日相對溼度、氣膠數目與體積濃度、散光係數、SO42-質量濃度及佔細粒徑氣膠質量濃度比率 132
表4.4.8 11月3日及11月6日相對溼度、氣膠數目與體積濃度、散光係數、SO42-質量濃度及佔細粒徑氣膠質量濃度比率 133
表4.4.9 10月29、11月2日及12月2日相對溼度、氣膠數目與體積濃度、散光係數、SO42-質量濃度及佔細粒徑氣膠質量濃度比率 134
表4.4.10採樣期間細粒徑氣膠(PM2.5)各化學物種質量濃度的貢獻量 135
1. 黃明雄(1998), 台灣地區大氣氣膠特性之研究-墾丁氣膠組成及濃度對大氣能見度的影響, 國立中央大學環境工 程研究所碩士論文.
2. 陳進煌(1995), 氣流軌跡模式在大氣污染物長程輸送上之運用, 國立中央大學大氣物理研究所碩士論文.
3. 陳靖沅(1998), 北高兩地氣流軌跡與降水化學之研究:聚類分析之應用, 國立中央大學大氣物理研究所碩士論文.
4. 蔡炯禎(1997), 台灣地區大氣氣膠特性之研究-台南春季氣膠微粒粒徑分布及散光係數的量測, 國立中央大學環 境工程研究所碩士論文.
5. Anderson T.L., Covert D.S., Marshall S.F., Laucks M.L., Charlson R.J. and Bates T.S.(1996), Performance Characteristics of a Hight-sensitivity, Three-wavelengh, Total Scatter/Back Scatter Nephelometer, J. Atmos. and Oceanic Techno., Vol.13, pp.967-986.
6. Baik N. J., Kim Y.P. and Moon K.C.(1996), Visibility Study in Seoul,1993 , Atmos. Environ., Vol.30, pp2319-2328.
7. Bohren C. and Huffman D. R.(1983), "Absorption and Scattering of Light by Small Particles," John Wiley, New York.
8. Beverland I.J., Crowther J.M., Srinivas M.S.N. and Heal M.R.(1998), The Influnece of Atmospheric Transport Patterns on the Chemical Composition of Rainfall in South-East England, Atmos. Environ., Vol.32, pp.1039-1048.
9. Brechtel F.J., Kreidenweis S.M. and Swan H.B.(1998), Air Mass Characteristics, Aerosol Particle Number Concentrations, and Number Size Distributions at Macquarie Island During the First Aerosol Characterization Experiment(ACE1), J. Geophysical Research, Vol.103, No.D13, pp.16351-16367.
10. Brink H.M. and Veefkind J.P.(1996), Aerosol Light-Scattering In the netherlands, Atmospheric Environment., Vol.30,pp.4251-4261.
11. Carrico C.M. and Rood M.J.(1998), Aerosol Light Scattering Properties at Cape Grim, Tasmania, During the First Aerosol Characterization Experiment(ACE1), J. Geophysical Research, Vol.103, No.D13, pp.16565-16574.
12. Chan Y. C., Simpson R.W. and Vowles P. D.(1997), Characterisation of chemical species in PM2.5 and PM10 Aerosol in Brisbane, Australia, Atmospheric Environment., Vol.31,pp.3773-3785.
13. Charlson R.J., Schwartz S.E., Hales J.M., Cess R.D., Coakley Jr. J.A., Hansen J.E. and Hofmann D.J.(1992), Climate Forcing by Anthropogenic Aerosols, Science, Vol.255, pp.423-430.
14. Christine B.R. and Kothny E.L.(1995), Visibility as Related to Atmospheric Aerosol Constituents, Atmospheric Environment., Vol.28,pp.2451-2461.
15. Chiara L.and Macro C.(1997), Atmosphere Aerosol Optical Properties :A Database of Radioactive Characteristics for Different Compounds and Classes, Optical Society of America.,Vol.36,pp.8031-8040.
16. Chow J.C., Watson J.C., Lowenthal D., Solomon P.A.(1993), PM10 and PM2.5 Compositions in California''s San Joaquin Valley, Aerosol Sci. Technol., Vol.18, pp.105-128.
17. Clements T., Mann J.F., Stone R.O. and Erymann J.L.(1963), A Study of Windborne Sand and Dust in Desert Areas, Tech. Report ES-8, U.S. Army Natick Laboratories, Earth Sci. Div., Vol.61, pp.417-436.
18. Dharmavaram S.(1987), A Study of the Intermediate-range Transport of Secondary Acid Species, Ph. D. Thesis, University of Illinois at Urbana Champaign.
19. Dzubay T.G., Stevens R.K. and Lewis C.W.(1982), Visibility and Aerosol Composition in Huston, Texas, Environ. Sci. Technol., Vol.25A, pp.514-524.
20. Eiden R.(1997), the Elliptical Polarization of Light Scattered by A Volume of Atmospheric Air, Optical Society of America.,Vol.36,pp.8569-8575.
21. Fengsheng Z., Zhiben G. and Huanal H.(1997), Simutaneous Determination of the Aerosol Complex Index of Refraction and Size Distribution from Scattering Measjrements of Polarized, Optical Society of America., Vol.36, pp.7992-8000.
22. Gordon G.E.(1988), Receptor Models, Environ. Sci. Technol., Vol.22, pp.1132-1142.
23. Grams G. W., Blifford and Russel P. B. (1997), Complex Index of Refraction of Airbone Soil Particles, Applied Meteorology, Vol.36, pp.459-471.
24. Groblicki P.J., Wolff G.T. and Countess R.J.(1981), Visilibity-reducing Species in the Denver Brown Cloud-1. Relationship between Extinction and Chemical Composition, Atmos. Environ., Vol.15, pp.2473-2484.
25. Hanel G.(1976), The properties of Atmospherica Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air, Adv. Geophys., Vol.19, pp.73-88.
26. Hanel G. and Lehman M.(1981), Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application, Beitr. Phys. Atmos, Vol.54, pp.57-71.
27. Hansen M. Z.(1997), atmospheric Particle Analysis Using Angular Light Scattering., Optical Society of America., Vol.32, pp.6771-6776.
28. Hering S. V., and Friedlander S.K.(1982), Origins of Aerosol Sulfur Size Distributions in the Los Angeles Basin, Atmos. Environ., Vol.16, pp.2647-2656.
29. Hering S., Eldering A. and Seinfeld J.H.(1997), Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ. Vol.31, pp.1-11.
30. Horvath H.(1993), Atmospheric Light Absorption-A Review, Atmos. Environ., Vol.27A, pp.293-317.
31. Zhuang H., Chan C.K., Fang M. and Wexler A.S.(1999), Size Distributions of Particulate Sulfate, Nitrate and Ammonium at a Coastal Site in Hong Kong, Atmos. Environ., Vol.33, pp.843-853.
32. Horvath H.(1995), Size Segregated Light Absorption Coefficient of the Atmospheric Aerosol, Atmos. Environ.,Vol.29, pp875-883.
33. Hudisxchewskyj A.B. and Seigneur C.(1989), Mathematical Modeling of the Chemistry and Physics of Aerosols in Plume, Environ. Sci. Technol., Vol.23, pp.413-421.
34. Jeffery R.B., Tom F. D. and Richard C. O.(1997), The Relationship among TSP, PM10,PM2.5 and Inorganic Constitutes Atmospheric Particulate Matter at Multiple Canadian Locations, J. Air Waste Manage. Assoc., Vol.47, pp.2-19.
35. Joel S. D., Douglas W. D. and Lucas M. N.(1996), Is Daily Mortality Associated Specifically with Fine Particles?, J. Air Waste Manage. Assoc., Vol.46, pp.927-939.
36. John W., Wall S.M., Ondo J.L. and Winklmayr W.(1990), Modes in the Size Distributions of Atmospheric Inorganic Aerosol, Atmos. Environ., Vol.24A, pp.2349-2359.
37. Junge C.E.(1963), Air Chemistry and Radioactivity, Acdemic Press, NY, pp.142.
38. Kokhanovsky A. A. and Macke A.(1997), Integral Light-scattering and Absorption Characteristics of Large ,Nonspherical Particles, Optical Society of America.,Vol.36,pp.8785-8790.
39. Larson S. M. and Cass G. R.(1989),Characteristics of Summer Midday Low-visibility Events in the Los Angeles Area, Environ. Sci. Technol., Vol.23, pp281-289.
40. Leaderer B.P., Tanner R.L., Lioy P.J., and Stolwijk A.J.(1981), Seasonal Variation in Light Scattering in New York Region and Their Relation to Sources, Atmos. Environ., Vol.15, pp.2407-2420.
41. Li F. and Okada K.(1999), Diffusion and Modification of Marine Aerosol Particles over the Coastal Areas in China: A Case Study Using a Single Particle Analysis, J. Atmos. Science, Vol.56, pp.241-248.
42. Lowenthal D.H. Rogers C.F. Saxena P. Watson J.G. and Chow J. (1995), Sensitivity of Estimated Light Extinction Coefficients to Model Assumptions and Measurement Errors. Atmos. Environ., Vol.29, pp751-766.
43. Lundgren D.A. and Paulus H.J. (1975), The Mass Distribution of Large Atmospheric Particles. J. Air Poll. Control Assoc., Vol.25, pp1227-1231.
44. Malm W.C., Gebhart K.A., Molenar J., Cahill T., Eldred R.(1994), Examining the Relationship between Atmospheric Aerosols and Light Extinction at Mount Rainier and North Cascades National Park, Atmos. Environ., Vol.28, pp.347-360.
45. Malm W.C., Molenar J.V., Eldred R.A. and Sisler J.F.(1996), Examining the Relationship among Atmospheric Aerosols and Light Scattering and Extinction in the Grand Canyon Area, Journal of Geophysical Research, Vol.101, No.D14, pp.19251-19265.
46. Malm W.C. and Kreidenweis S.M.(1997), The Effects of Models of Aerosol Hygroscopicity on the Apportionment of Extinction, Atmos. Environ., Vol.31, pp.1965-1976.
47. Middleton W.E.K.(1963), Vision Through the Atmosphere, University of Toronto Press, Toronto.
48. Molenar J.V., Dietrich D.L. and Tree R.M.(1989), Application of a Long Range Transmissometer to Measure the Ambient Atmospheric Extinction Coefficient in Remote Pristine Environments, in Visibility and Fine Particles, Edited by Mathai C.V., pp.305-317.
49. Molenar J.V. and Malm W.C.(1992), Ambient Optical Monitoring Techniques, Paper Presented at the Conference on Visibility and Fine Particles, Vienna, 1992.
50. Nair P. and Moorthy K.K.(1998), Effects of Changes in Atmospheric Water Vapor Content on Physical Properties of Atmospheric Aerosols at a Coastal Station, J. Atmos. and Solar-Terrestrial Physics, Vol.60, pp.563-572.
51. Ouimette J.R.(1981), Aerosol Chemical Species Contributions to the Extinction Coefficient, PH.D. Thesis, California Institute of Technology, Pasadena, California.
52. Piazzola J. and Despiau S.(1997), Contribution of Marine Aerosols in the Particle Size Distributions Observed in Mediterranean Coastal Site, Atmos. Environ., Vol.31, pp.2991-3009.
53. Pratsin S., Ellis E.C., Novakov T. and Friedlander S.K.(1984), The Carbon Component of Los Angeles Aerosols; Source Appointment and Contributions to the Visibility Budget, J. Air Pollut. Control Assoc., Vol.34, pp.643-650.
54. Pryor S.C., Simpson R., Sakiyama S.(1997), Visibility and Aerosol Composition in the Fraser Valley During Reveal, J. Air Waste Manage. Assoc., Vol.47, pp.147-156.
55. Quinn P.K., Marshall S.F., Bates T.S., Covert D.S. and Kapustin V.N.(1995), Comparison of Measured and Calculated Aerosol Properties Relevant to the Direct Radiative Forcing of Tropospheric Sulfate Aerosol on Climate, J. Geophysical Research, Vol.100, No.D5, pp.8977-8991.
56. Quinn P.K., Coffman D.J., Kapustin V.N. and Bates T.S.(1998), Aerosol Optical Properties in the Marine Boundary Layer During the First Aerosol Characterization Experiment(ACE1) and the Underlying Chemical and Physical Aerosol Properties, J. Geophysical Research, Vol.103, No.D13, pp.16547-16563.
57. Reist P.C.(1993), Aerosol Science and Technology, 2nd Edition, McGraw-Hill, Inc.
58. Robert B., Pascal R. and Michel C.(1997), Mean-field Approximation of Mie Scattering by Fractal of Identical Spheres, Optical Society of America., Vol.36, pp.8791-8796.
59. Salzen K., Schatzmann M. and Schlunzen K.H.(1997), Dynamics and Chemical Composition of Aerosols in the Continentally Influenced Marine Boundary Layer, J. Aerosol Science, Vol.28, pp.s7-s8.
60. Seinfeld J. H.(1986), "Atmospheric Chemistry and Physics of Air Pollution," Wiley, New York.
61. Shrestha R.P.(1996), Light Scattering by Aerosol Particles at an Anthropogenically Perturbed, Mid-latitude, Continental Site and Its Dependence on Particle Mass, Composition, and Air Mass Trajectory, M.S. thesis, pp.130, University of Illinois at Urbana-Champaign.
62. Sloane C.S. (1983), Optical Properties of Aerosols-Comparison of Measurements with Model Calculations. Atmos. Environ., Vol.17, pp409-416.
63. Sloane C.S. (1984), Optical Properties of Aerosols of Mixed Composition. Atmos. Environ., Vol.18, pp.669-680.
64. Slaone C.S. and Wolff G.T. (1985), Prediction of Ambient Light Scattering Using a Physical Model Responsive tp re;atove Humidity: Validation with Measurements from Detroit. Atmos. Environ., Vol.19, pp.1025-1037.
65. Sloane C.S. (1986), Effect of Composition on Aerosol Light Scattering Efficiencies. Atmos. Environ., Vol.19, pp.669-680.
66. Toon O. B. and Enn J.B.(1997), A Global average model of atmospheric aerosol for radiative transfer calculations, Vol.34, pp.7031-7040.
67. Twomey S. (1997), The Influence of Pollution on the Shortwave Albedo of Cloud, Atmos. Sci., Vol.34, pp.1149-1152.
68. Vignati E., G. de Leeuw and Plate E.(1997), Coastal Aerosols, Air Mass History and Meteorological Conditions, J. Aerosol Science, Vol.28, pp.s5-s6.
69. Vijayakumar G., Parameswaran K. and Rajan R.(1998), Aerosols in the Atmospheric Boundary Layer and It''s Association with Surface Wind Speed at a Coastal Site, J. Atmos. Solar-Terrestrial Phys., Vol.60, pp.1531-1542.
70. Waggoner A.P., Weiss R.E., Ahlquist N.C., Covert D.S., Will S. and Charson R.J.(1981), Optical Characteristics of Atmospheric Aerosols, Atmos. Environ., Vol. 15, pp.1891-1909.
71. Wall S.M., John W. and Ondo J.L.(1988), Measurement of Aerosol Size Distributions for Nitrate and Major Ionic Species, Atmos. Environ., Vol.22, pp.1649-1656.
72. White W.H.(1990), The Composition of Atmospheric Light Extinction: A Survey of Ground-level Budgets, Atmos. Environ., Vol.24, pp.803-812.
73. Zhuang H., Chan C.K., Fang M. and Wexler A.S.(1999), Size Distributions of Particulate Sulfate, Nitrate, and Ammonium at a Coastal Site in Hong Kong, Atmos. Environ., Vol.33, pp.843-853.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top