(18.210.12.229) 您好!臺灣時間:2021/02/26 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:祝德杭
研究生(外文):Te-Hang Chu
論文名稱:UV/H2O2系統分解水中氯苯類污染物與減毒效果之研究
論文名稱(外文):Degradation and Detoxification of Chlorobenzenes in Aqueous Solution by UV/H2O2 Process
指導教授:曾迪華曾迪華引用關係
指導教授(外文):Dyi-Hwa Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:141
中文關鍵詞:高級氧化程序紫外線/過氧化氫系統二氯苯減毒
外文關鍵詞:advanced oxidation processUV/H2O2 systemdichlorobenzenedetoxification
相關次數:
  • 被引用被引用:9
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以UV/H2O2程序處理水中氯苯類污染物,並探討光強度、溶液pH值、H2O2添加量及污染物初始濃度等操作因子,對於三種二氯苯污染物(1,2-、1,3- 和1,4-dichlorobenzene, DCB)之處理效果的影響。此外,本研究就污染物的分解反應速率、脫氯現象、中間產物之生成變化趨勢、能量消耗及減毒效果等,分別加以分析探討,藉以暸解最適的操作條件。
實驗結果顯示,1,3-及1,4-DCB的分解反應速率,隨pH的增加而有下降的趨勢,而1,2-DCB在pH=3~9之間,其分解反應速率反而有隨pH增加而上升的趨勢,不過,在高pH情況下,系統受到鹼催化作用的影響,均會導致分解速率明顯的下降。當紫外光光強度增強時,可明顯提高DCB的去除速率,然而當光強度超過6.5mW/cm2時,反應速率增加的趨勢,則有減緩的現象。三種二氯苯均有相同的最適H2O2添加量(H2O2/C0=42),但超過此添加量時,反應速率不再隨H2O2添加量的增加而有顯著的增加。此外,1,2-及1,3-DCB的初始濃度在10-4 M以下時,對反應速率的影響並無明顯的差異,但1,4-DCB的反應速率則會隨初始濃度增加,而有明顯減小的趨勢。本研究結果顯示,三種二氯苯在UV/H2O2系統中的分解反應速率大小,依序為1,4-DCB>1,3-DCB>1,2-DCB。另一方面,在大部份的操作條件下,二氯苯於反應時間40分鐘內,可完全脫氯,中間產物(以總有機碳表示)濃度,於20分鐘內達到最大值,此後即繼續礦化為最終安定產物(無機碳)。此外,本研究根據系統的EE/O值結果得知,在酸性條件、高H2O2添加量、低污染物初始濃度及高光強度情況下,系統所需的能量最小。而毒性試驗分析結果顯示,三種二氯苯經分解後,初期所產生之中間產物,其毒性皆較原污染物為高,其中,以溶液初始pH值為7時,其中間產物所具有的毒性最大;而溶液初始pH值為11時,產生的毒性最低,且能夠迅速於20分鐘內達到完全減毒的效果。
本研究初步認為,以UV/H2O2系統處理二氯苯污染物,其最適的操作條件為光強度=6.5 mW/cm2,pH=5,H2O2/C0 = 10。在此操作條件下,反應時間為180分鐘時,可達到80%以上完全礦化的效果。至於減毒的最適操作條件為光強度= 6.5 mW/cm2,pH=11,H2O2/C0 = 42,其在反應時間20分鐘時,二氯苯溶液便可達到完全減毒的效果。
The objective of this study was to investigate the efficiency of UV/H2O2 system for decomposing 1,2-, 1,3- and 1,4-dichlorobenzene (DCB) presented in aqueous solution. The factors affected the system performance, included UV light intensity, solution pH, H2O2 dosage and initial pollutant concentration, were studied. In addition, the reaction rate of DCB decomposition and dechlorination, the tendency of intermediate formation, energy consumption, and toxicity reduction were analyzed in order to establish the optimum operation conditions for the UV/H2O2 system.
Experimental results revealed that the reaction rate of decomposing 1,3- and 1,4-DCB decreased with the increase of pH and the rate for 1,2-DCB increased with the increase of pH in the range of 3 to 9. However, the degradation rate of DCB was reduced at higher pH due to H2O2 was undergoing a base-catalyzed decomposition. The effect of UV light intensity showed that the decomposition rate of DCB increased with the increase of light intensity, but the effect became insignificant as the light intensity was greater than 6.5 mW/cm2. Similarly, the degradation rate of DCB increased with the increase of H2O2 dosage up to H2O2/C0 = 42. Beyond this optimum dosage, however, the increase of degradation rate was negligible. The effect of initial DCB concentration on the decomposition rate was insignificant for 1,2- and 1,3-DCB at the concentration below 10-4M, but the rate was decreased with the concentration increased for 1,4-DCB. In general, the degradation rate of DCB in UV/H2O2 system was in the order of 1,4-DCB>1,3-DCB>1,2-DCB. Additionally, this study found that DCB could be completely dechlorination within 40 minutes and the concentration of intermediates based on TOC reach the maximum value in 20 minutes and then decreased gradually due to mineralization. The value of electrical energy per order (EE/O) indicated that the smallest energy consumption was occurred at the conditions of lower pH, higher H2O2 dosage, lower initial pollutant concentration and higher light intensity. The result of Microtox analysis revealed that the toxicity of intermediates formed initially was greater than that of original target compound, but the system could reach complete detoxification after 20 minutes.
In summary, the most suitable operating conditions for UV/H2O2 system to destroy DCB found in this study were UV light intensity = 6.5 mW/cm2, pH=5 and H2O2/C0=10. In which, greater than 80% mineralization was obtained within 180 minutes of reaction time. If complete detoxification of DCB in aqueous solution was expected, it would take about 20 minutes of reaction time under the optimum operating conditions of UV light intensity = 6.5 mW/cm2, pH=11 and H2O2/C0=42.
摘要 Ⅰ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅸ
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 4
2-1 氯苯類化合物之性質、用途及影響 4
2-2 紫外光/過氧化氫程序的反應理論 11
2-2-1 紫外光氧化程序 11
2-2-2 過氧化氫之物化特性 12
2-2-3 氫氧自由基的特性 13
2-2-4 苯環上的親電子性取代反應 15
2-2-5 紫外光/過氧化氫程序的氧化反應 17
2-3 紫外光/過氧化氫程序之影響因素 21
2-3-1 溶液pH值效應 21
2-3-2 紫外光光強度效應 23
2-3-3 過氧化氫添加量效應 25
2-3-4 反應物初始濃度效應 26
2-3-5 捕捉劑(scanvenger) 27
2-4 UV/H2O2系統之反應動力 29
2-5 毒性試驗 32
2-5-1 Microtox試驗 33
2-5-2 毒性表示法 34
2-5-3 Microtox試驗的應用範圍 35
第三章 實驗設備、材料與方法 38
3-1 實驗儀器 38
3-2 實驗藥品 39
3-3 實驗裝置 41
3-4 實驗步驟 43
3-5 分析方法 47
3-6 能量效率之計算方法 56
第四章 結果與討論 58
4-1 背景實驗 58
4-1-1 揮發實驗 58
4-1-2 直接氧化實驗 60
4-1-3 直接光解實驗 61
4-2 光催化過氧化氫分解氯苯類化合物 65
4-2-1 溶液pH效應 65
4-2-2 紫外線光強度效應 77
4-2-3 過氧化氫添加量效應 86
4-2-4 污染物初始濃度效應 96
4-2-5 兩階段光反應速率 103
4-2-6 綜合討論 110
4-2-7 能量效率 113
4-3 毒性試驗 115
4-3-1 背景實驗 116
4-3-2 氯苯類污染物反應前後之毒性分析 118
第五章 結論與建議 130
5-1 結論 130
5-2 建議 133
參考文獻 134
附錄 A-1
1. Baird, N.C., "Free Radical Reactions in Aqueous Solutions: Examples from Advanced Oxidation Processes for Wastewater and from the Chemistry in Airborne Water Droplets", Journal of Chemical Education, Vol. 74, No. 7, pp.817-819. (1997)
2. Beltr*n, F.J., G. Ovejero and B. Acedo, "Oxidation of Atrazine in Water by Ultraviolet Radiation Combined with Hydrogen Peroxide", Water Research, Vol. 27, No.6 , pp. 1013-1021. (1993)
3. Beltr*n, F.J., G. Ovejero and J. Rivas, "Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 4. Ozone Combined with Hydrogen Peroxide", Ind. Eng. Chem. Res, Vol. 35, No. 4, pp. 891-898. (1996a)
4. Beltr*n, F.J., G. Ovejero and J. Rivas, "Oxidation of Polynuclear Aromatic Hydrocarbons in water. 3. UV radiation Combined with Hydrogen Peroxide", Ind. Eng. Chem. Res., Vol. 35, No. 4, pp. 883-890. (1996b)
5. Beltr*n, F.J., M. Gonz*lez, B. Acedo and J. Jaramillo, "Contribution of Free Radical Oxidation to Eliminate Volatile Organochlorine Compounds in Water by Ultraviolet Radiation and Hydrogen Peroxide", Chemophere, Vol. 32, No. 10, pp. 1949-1961. (1996c)
6. Beltr*n, F.J., J. F. Garcia-Araya, J. Frades, P. Alvarez and O. Gimeno, "Effects of Single and Combined Ozonation with Hydrogen Peroxide or UV Radiation on the Chemical Degradation and Biodegradability of Debittering Table Olive Industrial Wastewaters", Water Research, Vol. 33, No. 3, pp. 723-732. (1999)
7. Benitez, F.J., J. Beltr*n-Heredia, T. Gonzalez and J. L. Acero, "Advanced Oxidation Processes In The Degradation Of Cyanazine", Ozone Science & Engineering, Vol. 17, No. 3, pp.237-258. (1995)
8. Benitez, F.J., J.B. Heredia, J.L. Acero and T. Gonzalez, "Degradation of Protocatechuic Acid by Two Advanced Oxidation Process: ozone/UV Radiation and UV/H2O2 Radiation", Water Research, Vol. 30, No. 7, pp. 1597-1604. (1996)
9. Blum, D. J. W. and R. E. Speece, "Determining Chemical Toxicity to Aquatic Species:the Use of QSARs and Surrogate Organisms", Environ. Sci. Technol., Vol. 24, No. 3, pp. 284-293. (1990)
10. Bolton, J. R. and S. R. Cater, "Homogeneous Photodegradation of Pollutants in Contaminated Water: An Introduction," Aquatic and Surface Photochemistry, Ed. G. R. Helz, R. G. Zepp, and D. G. Crosby, Lewis Publishers, pp. 467-490. (1994)
11. Borup, M. B. and E. J. Middlebrooks, "Photocatalyzed Oxadation of Toxic Organics", Wat. Sci. Tech, Vol. 19, No. 4, pp. 381-390. (1987)
12. Brenner, A., S. Belkin and A. Abeliovich, "Development of A Pretreatment Program to Improve Biological Treatability of High Strength and Toxic Industrial Wastewater", Wat. Sci. Tech, Vol. 29, No. 9, pp. 29-37. (1994)
13. Brower, G. R., et al, Removal of Hazardous Wastes in Wastewater Facilities:Halogenated Organics, Manual of Practice No. FD-11, WPCF, pp. 39-108 (1984)
14. Brunsbach, F. R. and W. Reineke, "Degradation of Chlorobenzenes in Soil Slurry by a Specialized Organism", Appl. Microbiol. Biotechnol., Vol. 42, No. 2~3, pp. 415-420. (1994)
15. Buettner, G. R., "Spin Trapping of Hydroxyl Radicals", Ed. R. A. Greenwald, CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, pp. 151-155 (1985).
16. Bulich, A. A., "A Practical and Reliable Method for Monitoring the Toxicity of Aquatic Samples", Process Biochem., March/April, pp. 45-47. (1982)
17. Buxton, G. V., C. L. Greenstock, W. P. Helman and A. B. Ross, "Critical Review of Rate Constants for Reaction of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (.OH/.O-) in Aqueous Solution", J. Phys. Chem. Ref. Data, Vol. 17, No. 2, pp. 513-531. (1988)
18. Chen J. N. and C. H. Ni, "The Reaction Mechanisms in the Ozonation of 2,4-Dichlorophenol Aqueous Solution", 第二十二屆廢水處理技術研討會論文集,pp. 255-260. (1997)
19. Coleman, R.N. and A. A. Qureshi, "Microtox and Spirillum volutants Tests for Assessing Toxicity of Environmental Samples", Bull. Environ. Contam. Toxicol., Vol. 35, pp. 443-451. (1985)
20. D*Oliveira, J. C., G. Al-Sayyed and P. Pichat, "Photodegradation of 2- and 3-Chlorophenol in TiO2 Aqueous Suspensions",Environ. Sci. Technol.,Vol. 24, No. 7,pp.990 -996. (1990)
21. Dussert, B.W. "Advanced Oxidation: Ultraviolet Light Helps Advanced Oxidation Technologies Outshine Other Treatment Systems for Organics in Wastewater and Groundwater", Industrial Wastewater, pp. 29-35. (1997)
22. Elin, E., et al., Pretreatment of Industrial Wastes, Manual of Practice FD-3, WEF, pp. 1-14 (1994a)
23. Elin, E., et al., Pretreatment of Industrial Wastes, Manual of Practice FD-3, WEF, pp. 189-224 (1994b)
24. Ewa, L-K. and R.B. James, "Flash Photolysis/HPLC Applications. 2. Direct Photolysis vs Hydrogen Peroxide Mediated Photodegradation of 4-Chlorophonel As Studied by a Flash Photolysis /HPLC Technique", Environ. Sci. Technol., Vol. 26, No. 2, pp.259-265. (1992)
25. Fujigira, M., Y. Satoh and T. Osa, "Heterogeneous Photocatalytic Reaction on Semiconductor Materials. Ⅲ . Effect of pH and Cu2+ Ions on the Photo-Fenton Type Reaction ", Bull. Chem. Soc. Jpn., Vol. 55, No. 3, pp. 666-671. (1982)
26. Glaze, W.H., Y. Lay and J. W. Kang, "Advanced Oxidation Processes. A Kinetic Model for the Oxidation of 1,2-Dibromo-3-chloropropane in Water by the Combination of Hydrogen Peroxide and UV Radiation", Ind. Eng. Chem. Res, Vol. 34, No. 7, pp. 2314-2323. (1995)
27. Gratzel, M., Energy Resources through Phtochemistry and catalysis, Acadmic Press Inc. (1983)
28. Hao, O. J., C. F. Lin, F. T. Jeng and C. J. Shin, "A Riview of Microtox Test and Its Applications", Toxicological and Environmental Chemistry, Vol. 52, No. 1, pp. 57-76. (1995)
29. Hirvonen, A., T. Tuhkanen and P. Kalliokoski., "Treatment of TCE- and PCE-Contaminated Groundwater Using UV/H2O2 and O3/H2O2 Oxidation Process", Wat. Sci. Tech. , Vol. 33, No. 6, pp. 67-73. (1996)
30. Ho, T-F.L. and J.R. Bolton "Toxicity changes Druing the UV Treatment of Pentachlorophenol in Dilute Aqueous Solution", Water Research, Vol. 32, No. 2, pp.489-497. (1998)
31. Ince, N.H. and D.T. G"nenc, "Treatability of a Textile Azo Dye by UV/H2O2", Environmental Technology, Vol. 18, No. 2, pp. 179-185. (1997)
32. Ince, N. H., "Light-enhanced Chemical Oxidation for Tertiary Treatment of Municipal Landfill Leachate", Water Environment Research, Vol. 70, No. 6, pp. 1161-1169. (1998)
33. Jayson G. G., and Parsons B. J., "Some Simple, Highly Reactive, Inorganic Chlorine Derivatives in Aqueous Solution", J. of the Chemical Society, Faraday Transaction I, 69, pp. 1597-1607. (1973)
34. Jin, L. and M. A. Abraham "Low-Temperature Catalytic Oxidation of 1,4-Dichlorobenzene", Ind. Eng. Chem. Res., Vol. 30, No. 1, pp.89-95. (1991)
35. Jin, L., Z. Ding and M. A. Abraham, "Catalytic Supercritical Water Oxidation of 1,4-Dichlorobenzene", Chemical Engineering Science, Vol. 47, No. 9-11, pp.2659-2664. (1992)
36. Karel, V., Handbook of Environmental Data on Organic Chemicals, 2th edition, New York(1983).
37. Kochany, J. and J. R. Bolton, "Mechanism of Photodegradation of Aqueous Organic Pollutants. 2. Measurement of the Primary Rate Constants for Reaction of OH Radicals with Benzene and some Halobenzenes Using an EPR Spin-Trapping Method Following the Photolysis of H2O2", Environ. Sci. Technol.,Vol. 26, No. 2, pp.262-265. (1992)
38. Ku, Y. and S. C. Ho, "The Effect of Oxidants on UV Destruction of Chlorophenols", Environ. Prog. Vol. 9, No. 4,pp. 218-221. (1990)
39. Ku. Y., L. S. Wang and Y. S. Shen, "Decomposition of EDTA in Aqueous Solution by UV/H2O2 Process", Journal of Hazardous Materials, Vol. 60, No. 1, pp. 41-56. (1998)
40. Leihner, N.K.V. and M. Dor*, "Mechanism of the Reaction Between Hydroxyl Radicals and Glycolic, Glyoxylic, Acetic and Oxalic Acids in Aqueous Solution: Consequence on Hydrogen Peroxide Consumption in the H2O2/UV and O3 / H2O2 Systems", Water Research, Vol. 31, No. 6, pp. 1383-1397. (1997)
41. Li, K.Y., C. C. Liu, Q. Ni, Z. F. Liu, F. Y. C. Huang and J. A. Colapret, "Kinetic Study of UV Peroxidation of Bis(20chloroethyl)Ether in Aqueous Solution", Ind. Eng. Chem. Res., Vol. 34, No. 6, pp. 1960-1968. (1995)
42. Lun*k, S. and P. Sedl*k, "Photoinitiated Reactions of Hydrogen Peroxide in the Liquid Phase", J. Photochem. Photobiol. A: Chem., Vol. 68, No. 1, pp. 1-33. (1992)
43. Mackay, D. and W. Y. Shiu, "A Critical Review of Henry*s Law Constants for Chemicals of Environmental Interest", J. Phys. Chem. Ref. Data, Vol 10, No. 4, pp. 1175-1199. (1981)
44. March, J., Advanced Organic Chemistry, 3th edition, Wiley-Interscience, New York. (1992)
45. Marco, A., S. Esplugas, and G. Saum, "How and Why Combine Chemical and Biological Processes for Wastewater Treatment", Wat. Sci. Tech, Vol. 35, No. 4, pp. 321-327. (1997)
46. Medley, D. R. and E. L. Stover, "Effects of ozone on the biodegradability of biorefractory pollutants", Journal WPCF, Vol. 55, No. 5, pp. 490-494. (1983)
47. Munkittrick, K. R. and E. A. Power, "The Relative Sensitivity of Microtox, Daphnid, Rainbow Trout and Fathead Minnow Acute Lethality Tests", Environmental Toxicology and Water Quality, Vol. 6, No. 1, pp. 35-62. (1990)
48. Nielsen, P.H., P. L. Bjerg, P. Nielsen, P. Smith and T. H. Christensen, "In Situ and Laboratory Determined First-Order Degradation Rate Constants of Specific Organic Compounds in an Aerobic Aquifer", Environ. Sci. Technol., Vol. 30, No. 1, pp.31-37. (1996)
49. Oanh, N. T. K. and B-E. Bengtsson, (1995) "Toxicity to Microtox,Micro-Algae and duckweed of Effluents from the Bai Bang Paper Company (BAPACO), A Vietnamese Bleached Kraft Pulp and Paper Mill ", Environmental Pollution, Vol. 90, No. 3, pp. 391-399.
50. Sawyer, C. N., P. L., McCarty and Gene F. Parkin, Chemistry for Environmental Engineering, 4th edition, McGraw-Hill(1994)
51. Scheck, C. K. and F. H. Frimmel, "Degradation of Phenol and Salicylic Acid by Ultraviolet Radiation/Hydrogen Peroxide/Oxygen", Water Research, Vol. 29, No. 10, pp. 2346-2352. (1995)
52. Schulate, P., M. Volkmer, and F. Kuhn, "Activated Hydrogen Peroxide to Eliminate Pollutants in Water (H2O2/UV)", Degussa Industrial and Fine Chemicals Division, Frankfurt, Germany. (1991)
53. Schulte, P., A. Bayer, F. Kuhn, T. Luy and M. Volkmer, "H2O2/O3, H2O2/UV And H2O2/Fe+2 Processes for The Oxidation Of Hazardous Wastes", Ozone Science & Engineering, Vol. 17, No. 2, pp.119-134. (1995)
54. Schwarzenbach, R. P., P. M. Gschwend and D. M. Imboden, Environmental Organic Chemistry, Wiley Interscience, New York, pp. 109-123 (1993)
55. Shu, H. Y., C. R. Huang and M. C. Chang, "Photooxidative Degradation of Azo Dyes in Water Using Hydrogen Peroxide and UV Radiation", 26th Mid-Atalanntic Industrial and Hazardous Waste Conference, pp. 186. (1994)
56. Snoeyink, V. L. and D. Jenkins, Water Chemistry, 新智, pp. 156-173 (1982)
57. Soctt, J. P. and D. F. Ollis, "Integration of Chemical and Biological Oxidation Processes for Water Treatment: Review and Recommendations", Environ. Prog., Vol. 14, No. 2, pp. 88-103. (1995)
58. Solomons, T. W. G., Fundamentals of Organic Chemistry, 3th edition, Wiley Interscience, New York (1990)
59. S"rensen, M. and F.H. Frimmel, "Photochemical Degradation of Hydrophilic Xenobiotics in the UV/H2O2 Porcess: Influence of Nitrate on the Degradation Rate of EDTA, 2-Amino-1-Naphthalenesulfonate, Diphenyl-4-Sulfonate and 4,4*-Diaminostilbene-2-2*-Disulfonate", Water Research, Vol. 31, No. 11, pp. 2885-2891. (1997)
60. Sunder, M. and D-C. Hempel, "Oxidation of Tri- and Perchloroethene in Aqueous Solution with Ozone and Hydrogen Peroxide in a Tube Reactor", Water Research, Vol. 31, No. 1, pp. 33-40. (1997)
61. Sundstrom, D. W., H. E. Klei, T. A. Nalette, D. J. Reidy and B. A. Weir, "Destruction of Halogenated Aliphatics by Ultraviolet Catalyzed Oxidation with Hydrogen Peroxide", Hazardous Waste & Hazardous Materials, Vol. 3, No. 1, pp. 101-110. (1986)
62. Sundstrom, D. W. and B. A. Weir, "Destruction of Mixtures of Pollutants by UV-Catalyzed Oxidation with Hydrogen Peroxide", ACS Symp. Series, Vol. 422, pp. 67-76. (1990)
63. Tseng, J. M. and C. P., Huang, "Removal of Chlorophenols from Water by Photocatalytic Oxidation", Wat. Sci. Technol., Vol. 23, No. 1-3, pp.377-387. (1991)
64. Wade, L. G., Organic Chemistry, 2nd edition, Englewood Cliffs, New Jersey, pp. 715-766(1991).
65. Weir, B. A. and D. W. Sundstrom, "Rate of Destruction of Trichloroethylene by UV Light Catalyzed Oxidation with Hydrogen Peroxide", Paper 52B, AICHE National Meeting, San Francisco (1989).
66. Yadav, J. S., R. E. Wallace and C. A. Reddy, "Mineralization of Mono- and Dichlorobenzenes and Simultaneous Degradation of Chloro- and Methyl-Substituted Benzenes by the White Rot Fungus Phanerochaete chrysosporium", Appl. Environ. Microbiol., Vol. 61, No. 2, pp. 677-680. (1995)
67. 黃國書,「以二氧化鈦進行光催化反應去除水中單氯酚類之比較研究」,碩士論文,國立中興大學環境工程學研究所,台中(1992)
68. 林敬二等人,「化學大辭典」,高立,台北 (1992)
69. 李勳宜,郭盈顯,「石化廢水微生物毒性(Microtox)之研究」,第十八屆廢水處理技術研討會論文集,pp. 189-199 (1993)
70. 林億芳,「利用UV/H2O2光化學氧化法處理含酸性染料廢水之研究」,碩士論文,國立台灣大學環境工程學研究所,台北(1994)
71. 「勞工作業環境空氣中有害物容許濃度標準」,行政院勞工委員會編印,台北(1995)。
72. 「物質安全資料表及標示參考範例」,行政院勞工委員會編印,台北(1997)。
73. 李元陞,「以雙氧水為催化劑的光化學氧化方法處理鄰-氯酚有機廢水之研究」,第二十屆廢水處理技術研討會論文集,pp. 6-135~6-139 (1997)
74. 莊連春,「紫外光/過氧化氫程序分解水中毒性污染物之研究」,博士論文,國立中央大學環境工程研究所,中壢(1997)。
75. 廖志祥,康世芳,洪鴻斌,柏雪翠,「使用H2O2/UV高級氧化程序處理難分解染料製程廢水」,第二十二屆廢水處理技術研討會論文集,pp. 163-170 (1997)。
76. 倪振鴻、陳重男和劉勇信,「臭氧與2,4-二氯酚水溶液反應過程Microtox毒性之探討」,第二十三屆廢水處理技術研討會論文集,pp. 734-741 (1998)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔