跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:倪澤恩
研究生(外文):TZER-EN NEE
論文名稱:以分子束磊晶成長量子點結構及雷射元件
論文名稱(外文):Molecular Beam Epitaxy of Quantum Dot Heterostructures and Its Application to Lasers
指導教授:李清庭綦振瀛
指導教授(外文):CHING-TING LEEJEN-INN CHYI
學位類別:博士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:82
中文關鍵詞:分子束磊晶量子點雷射元件
外文關鍵詞:Molecular Beam EpitaxyQuantum DotsLasers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的重點是以分子束磊晶技術在砷化鎵基板上成長高結晶品質的自我組成砷化鎵銦量子點異質結構,並且製做出可在室溫下連續操作的量子點雷射。
首先,我們詳細的描述磊晶成長量子點的方法與步驟,並以原子力顯微鏡有系統的觀測量子點的形成、大小、與密度。我們觀察到應變量與表面增原子的自由能是量子點形成的重要因素,也發現了成長過程中砷的流量與基板傾斜角度大小對應著量子點的密度,而且在砷化鎵銦表面成長的量子點結構特性比在砷化鎵,砷化鎵鋁表面成長的要好。
接著,我們藉由變溫的光激、電激光譜與電流電壓曲線量測對量子點異質結構做光學和電學特性分析,並討論基板傾斜角度與介面層材料對量子點系統內載子的侷限能力、活化能、與能階飽和現象的影響。結果發現在偏四度的基板上採用砷化鎵銦為介面層的量子點異質結構展現了較佳的量子點特性。
綜合上述的研究,我們製做出可在室溫下操作的量子點雷射,並分析雷射元件的量子效率、損耗、與熱穩定性。其中,在20到70 oC範圍裡,特徵溫度達125 K,這是現今最好的結果。而在量子點內摻雜鈹原子,更成功的製成了可室溫連續操作的量子點雷射。
This dissertation focuses on the growth, characterization, and fabrication of self-assembled In0.5Ga0.5As quantum dot lasers grown by molecular beam epitaxy.
The detailed growth procedures and structural properties of self-assembled In0.5Ga0.5As quantum dots are systematically studied. Parameters that affect the configuration of the quantum dots, such as the As overpressure, substrate misorientation, the strain in the buffer layer, and matrix materials, have been investigated using atomic force microscopy. It is found that a high dot density corresponds to a high As overpressure and large misorientation, and vice versa. The associated surface strain energy and the free energy for the adatoms are key factors in the formation of the quantum dots. Better morphological characteristics for dots nucleated on a In0.1Ga0.9As matrix are also found.
The optical and electrical characteristics of heterodot structures are investigated, and the intimate relationship between these properties and their morphological characteristics is developed. The photoluminescence (PL) spectra indicate that In0.5Ga0.5As quantum dots on a 4o-off substrate exhibit a higher intensity, compared to those on 15o-off and exact (100) substrates. The activation energy derived from the temperature-dependent PL of In0.5Ga0.5As quantum dots on a 4o-off substrate is higher than that of dots on 0o and 15o-off substrates. These properties are consistent with the results of the laser performance, as shown in the last chapter. As to the matrix material effects, the dots in the In0.1Ga0.9As matrix exhibit higher PL and electroluminescence (EL) intensities, as compared to those in the GaAs and In0.1Al0.9As matrices. The activation energy of dots in a GaAs matrix is higher than that of dots in a In0.1Ga0.9As matrix. The effects of state filling effect may be observed in the power dependent EL spectra for dots in the In0.1Ga0.9As and GaAs matrices. The I-V characteristics show that a carrier tunneling-recombination is the dominant process in the low bias and low temperature region for dots in the In0.1Ga0.9As and GaAs matrices. Comparing the I-V characteristics of three samples, the larger tunneling-recombination current in the In0.1Ga0.9As matrix sample can be attributed to its smaller *Ec, its higher dot density and its larger lateral size. From our experimental results, including the crystallographic qualities, and luminescent and electrical properties, a homogeneous deposition is preferable to a heterogeneous deposition in quantum-effect devices.
Finally, the potential of three-dimensional quantum dot heterostructures to device applications is demonstrated by means of room-temperature operating laser diodes. We have systematically studied the characteristics of In0.5Ga0.5As quantum dot lasers grown on three types of GaAs substrates. Due to its better quantum confinement, the 4o-off sample exhibits a lower threshold current of 47 mA at room temperature, compared to 73 and 65 mA for the 0o and 15o-off samples, respectively. It also has a higher characteristic temperature, 177 K. Furthermore, improvements in the laser''s performance are demonstrated using As dimers. A characteristic temperature as high as 125 K has been measured for quantum dot lasers in the temperature range between 20 and 70 oC. Which is the highest value at such a high operating temperature for self-assembled InGaAs quantum dot lasers. It is also found that the slope efficiency of these lasers does not degrade very much as the temperature is increased. This implies that the quantum dot lasers have an excellent carrier confinement and a low leakage current.
The continuous-wave operation of Be-doped In0.5Ga0.5As quantum dot lasers is fabricated and characterized between 20 and 70 oC. This laser exhibits a threshold current per dot layer of 32 mA and a slope efficiency of 0.12 W/A at 15 oC, and a characteristic temperature of 56 K.
!. Intoduction
2. Molecular Beam Epitaxial Grwoth and the Structural Properties of InGaAs Quantum Dots
3. Characteristics of Self-Assembled InGaAs Quantum Dot Heterostructures
4. Characteristics of InGaAs Quantum Dot Lasers
5. Conclusions
1. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop''ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, Electron. Lett., 30, 1416, 1994.
2. A. F. Tsatsul''nikov, B. V. Volovik, N. N. Ledentsov, M. V. Maksimov, A. Yu. Egorov, A. E. Zhoukov, A. R. Kovsh, V. M. Ustionov, Chao.Chen, P. S. Kop''ev, Zh. I. Alferov, V. N. Petrov, G. E. Tsirlin, D.Bimberg, Semiconductors, 32, 84, 1998.
3. K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, J. Phillips, Electron. Lett., 32, 1374, 1996.
4. H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara, T. Uchida and H. Ishikawa, IEEE Photonics Technol. Lett. 12, 1385, 1995.
5. T.-E. Nee, N.-T. Yeh, J.-I. Chyi, C.-T. Lee, Proc. 2nd International Symposium on Formation, Physics and Device Application of Quantum Dot Structures, Sapporo, Japan, (1998), pp. 226-227.
6. J. Temmyo, E. Kuramochi, M. Sugo, T. Nishiya, H. Kamada, R. Nozel, and T. Tamamura, Electron. Lett., 31, 209, 1995.
7. D. Leinard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203, 1993.
8. D. Leinard, M. Krishnamurthy, S. Fafard, J. L. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 1063, 1994.
9. P. Chen, Q. Xie, A. Madhukar, Li Chen, and A. Konkar, J. Vac. Sci. Technol. B 12, 2568, 1994.
10. D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Arega, Jr., E. Petitprez, and P. Basmaji, J. Vac. Sci. Technol., B 14, 2212, 1996.
11. J.-I Chyi, T.-E. Nee, C.-T. Lee, J.-L. Shieh, and J.-W. Pan, J. of Crystal Growth, 175/176, 777, 1996.
12. N.-T. Yeh, T.-E. Nee, P.-W. Shiao, M.-N. Chang, J.-I. Chyi, in International Symposium on Formation, Physics and Device Application of Quantum dot Structures (QDS''98), 1998.
13. A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, V. M. Ustinov, M. V. Maksimov, A. F. Tsatsul''nikov, Zaitsev, S. V., Gordeev, N. Yu, Kop''ev, P. S., Alferov, Zh. I., Bimberg, D., Semiconductors, 31, 411, 1997.
14. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, Appl. Phys. Lett. 71, 193, 1997.
15. M. V. Maksimov, N. Yu. Gordeev, S. V. Zaitsev, P. S. Kop''ev, I. V. Kochnev, N. N. Ledentsov, A. V. Lunev, S. S. Ruvimov, A. V. Sakharov, A. F. Tsatsul''nikov, Yu. M. Shernyakov, Zh. I. Alferov, D. Bimberg, Semiconductors 31, 124, 1997.
16. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett., 69, 4188, 1997.
17. A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, V. M. Ustinov, M. V. Maksimov, A. F. Tsatsul''nikov, Zaitsev, S. V., Gordeev, N. Yu, Kop''ev, P. S., Alferov, Zh. I., Bimberg, D., Semiconductors, 31, 411, 1997.
18. J.-I Chyi, T.-E. Nee, C.-T. Lee, J.-L. Shieh, and J.-W. Pan, J. of Crystal Growth 175/176, 777, 1997.
19. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, T. Futatsugi, Y. Sugiyama, N. Yokoyama, and H. Ishikawa, Proc. 10th Intern. Conf. on Indium Phosphide and Related Materials, Tsukuba, Japan, (1998), pp. 345-348.
20. S. V. Zaitsev, N. Yu. Gordeev, V. I. Kopchatov, A. M. Georgievskii, V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, N. N. Ledentsov, P. S. Kop''ev, Zh. I. Alferov, D. Bimberg, Semiconductors 31, 947, 1997.
21. T.-E. Nee, N.-T. Yeh, J.-I. Chyi, C.-T. Lee, Proc. 10th International Conference on Molecular Beam Epitaxy, Cannes, France, (1998), pp. 308.
22. N. N. Ledentsov, D. Bimberg, Yu. M. Shernyakov, V. Kochnev, M. V. Maximov, A. V. Sakharov, I. L. Krestnikov, A. Yu. Egorov, A. E. Zhukov, A. F. Tsatsul''nikov, B. V. Volovik, V. M. Ustinov, P. S. Kop''ev, Zh. I. Alferov, A. O. Kosogov, and P. Werner, Appl. Phys. Lett., 70, 2888, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top