(18.210.12.229) 您好!臺灣時間:2021/02/26 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁中瑜
研究生(外文):Chung-Yu Liang
論文名稱:液晶顯示器之薄膜電晶體鋁閘極之研究
論文名稱(外文):The Study on Aluminum gate of Thin Film Transistor for Liquid Crystal Displays
指導教授:梁忠義梁忠義引用關係張鼎張
指導教授(外文):Chung-Yee LeungTing-Chang Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:68
中文關鍵詞:鋁閘極薄膜電晶體化學機械研磨
外文關鍵詞:Aluminum gateTFTCMP
相關次數:
  • 被引用被引用:2
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用高溫沈積鋁薄膜作為非晶矽薄膜電晶體之閘極。因為非晶矽薄膜電晶體的特性會受介電層表面型態與平坦度之影響,而介電層的平坦度則由下層的鋁閘極所支配。高溫沈積的鋁薄膜可以抑制丘狀突起(Hillock)的成長,而其抑制丘狀突起(Hillock)的能力與其沈積時的溫度和Al(111)晶向的強度有關。因為鋁閘極在高溫沈積時已有退火(Annealing)的效應,Al(111)晶向強度則是會隨著沈積溫度的升高而加強。但高溫沈積的鋁具有較大的晶粒(Grain)亦即具有較大的粗糙度,以致於影響了後續薄膜製程的平坦度,進而影響電性,在此我們利用化學機械研磨(Chemical Mechanical Polisher)來磨平鋁閘極,使其具有高溫鋁的特性,又具有較高的平坦度,以獲得較好的電晶體特性表現。在本研究中我們成功的降低高溫鋁的平坦度,使得其後成長的介電層與通道(Channel)間具有較平坦的介面,並獲得較原來電晶體更高的電流與場效遷移率(Mobility)。
The electrical performance of hydrogenated amorphous silicon (a-Si:H), thin film transistors are affected by the surface roughness of SiNX/a-Si:H. If we can get a smooth aluminum film, the SiNX and a-Si:H film would be more flatter. The hillock formation are related to Al(111) and it’s deposited temperature. The high deposited temperature of aluminum films are expected to suppress hillocks formation. However with higher temperature deposited, the aluminum grains became larger and the surface became rougher that result in the degradation of device performances. In this study, we use CMP (Chemical Mechanical Polisher) to polish the aluminum films in order to reduce the roughness of hot aluminum films and obtain better TFT performances.
It has been investigated that the characteristics of a-Si:H TFT device is strong dependent on the morphology of aluminum film. In this work, we have successful developed a high performance TFT with aluminum gate. The aluminum is deposited at high temperature. The smoother surface of aluminum gate results in the better interface between gate dielectric and channel of TFT. Therefore, a high performance (such as high On current, high mobility) of TFT with aluminum gate is obtained.
Chinese Abstract…………………………………………………i
English Abstract…………………………………………………ii
Acknowledgment……………………………………………………iii
Contents……………………………………………………………iv
Figure Captions………………………………………………… vi
Table Captions……………………………………………………ix
Flowchart………………………………………………………… x
Chapter 1 Introduction…………………………………………………………………1
Chapter 2 Plasma-Enhanced Chemical Vapor Deposition system… 4
2.1 Reaction chamber………………………………………………………5
2.2 Gas distribution system…………………………………………… 6
2.3 Pumping system…………………………………………………………7
2.4 Radio frequency generator………………………………………… 7
Chapter 3 Experimental procedures……………………………………8
3.1 Sample preparation……………………………………………………8
3.2 Characterization techniques………………………………………13
Chapter 4 Results and discussions………………………………… 14
4.1 Material research of “hot aluminum film”………………… 14
4.1.1 Effects of aluminum’s deposition temperature on Al(111)
texture intensity…………………………………………………14
4.1.2 Annealing effects on Al(111) texture……………………… 14
4.1.3 The (111) texture and deposition temperature effects on
surface roughness of aluminum film………………………… 16
4.1.4 The mechanism of hillock formation………………………… 17
4.2 I-V characteristics of thin film transistor…………………20
4.2.1 a-Si:H TFT operation principle……………………………… 20
4.2.2 Mobility…………………………………………………………… 22
4.3 Mechanism………………………………………………………………24
Chapter 5 Conclusions………………………………………………… 28
Reference……………………………………………………………………30
[1] Eiji Iwamura, Takashi, Kazuo Yoshikawa, Thin Solid Films,270, pp. 450-455, 1995.
[2] T. Onishi, E. Iwamura, K.Takagi, and K. Yoshikawa. J. Vac. Sci. Technol. A 14(5) pp.2728-2735.
[3] S. Takayama, N. Tsutsui. J. Vac. Sci. Technol. B 14(5) pp.3257-3262.
[4] B. Cao Martin , C. J. Tracy, J. W. Mayer, L. E. Hendrickson, Thin Solid Films, 271, pp. 64-68, 1995.
[5] 陳世明, 國立交通大學材料科學與工程研究所碩士論文. “Application of High Temperature Depoited Aluminum Gate Electrode on the Fabrication of a-Si TFT”, 1997
[6] Hiroyuki Uchina et al., “Mobility Improvement Mechanism In a-Si:H TFTs with Smooth a-Si:H/SiNx Interface”, Mat. Res. Soc. Symp. Proc., 258, pp. 955, 1992.
[7] K. Kusaka, T. Hanabusa, M. Nishida, F. Inoko, “Residual Stress and In-situ Thermal Stress Measurement of Aluminum Film Deposited on Silicon Wafer”, 290-291, pp 248-253, 1996.
[8] K.Murakami, T. Takeuchi, K. Ishikawa, and T. Yamamoto: Appl. Surf. Sci. 33/34, (1988) p.742
[9] E. C. Paloura, J. Lagowski, and H. C. Gatos: J. Appl. Phys. 69 (1991) p.3995
[10] K. Maeda and I Umezu: J.Appl. Phys. 70 (1991) p.2745
[11] A. K. Sinha and T.E. Smith:J. Appl. Phys. 49 (1978) p.2756
[12] D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker: J. Electro-chem. Soc.137 (1990) p.614.
[13] G. Lucovsky, P. D. Richard, D. V. Tsu, S. Y. Lin and R. J. Markunas: J. Vac. Sci. Technol. A4 (1986) p.681
[14] S. V. Hattangady, G. G. Fountain, R. A. Rudden and R. J. Markunas: J.Vac. Sci. Technol. A7 (1989) p.570
[15] S. W. Hsieh, C. Y. Chang and S. C. Hsu: J. Appl. Phys. 74 (1993) p.2638
[16] 林炯暐, 國立交通大學電子研究所博士論文. “High performance Hydrogenated Amorphous Silicon Thin film Devices Fabrication by Plasma Enhanced Chemical Vapor Deposition Method”, 1997
[17] G. A. Scoggan, B. N. Agarwala, P. P. Peressini, and A. Brouillard, IEEE 13th Ann. Proc. Rel. Phys., 151, 1975.
[18] S. Vaiday, D. B. Fraser, and A. K. Sinha, IEEE 18th Int. Rel. Phy. Symp., 165, 1980.
[19] W. G. Sloof, R. Delhez, Th. H. de Keijser and E. J. Mittemeijer, J. Matter. Sci, 22, pp. 1701, 1987.
[20] B. J. Kooi et al., Residual Stresses III, vol. 1, Elsevier Science Publishers, Amsterdam, pp. 11, 1992.
[21] T. Hanabusa et al., Residual Stresses III, vol. 1, Elsevier Science Publishers, Amsterdam, pp. 78, 1992.
[22] T. Hanabusa et al., Proc. Fourth Int. Conf. On Residual Stresses, Soc. for Experiment Mechanics, Connecticut, pp. 631, 1994.
[23] I. C. Noyan, C. C. Goldsmith, Adv. X-Ray Anal., 35, pp. 461, 1992.
[24] F. Y. Genin, J. Appl. Phys., Vol. 77, No. 10, p.5130, 1995
[25] C. J. Shute and J. B. Cohen, J. Mater. Res., 6, pp. 950, 1991.
[26] P. S. Ho et al., AIP Conf. Proc., 305, pp. 62, 1994.
[27] I.C. Noyan and C. C. Goldsmith, Adv. X-Ray Anal., 34. pp. 987, 1991.
[28] M. Schneegans et al., AIP Conf. Proc., 305, pp. 111, 1994.
[29] C. C. Goldsmith and C. V. Buskirk, Adv. X-Ray Anal., 36, pp. 203, 1993.
[30] M. Hack, M. S. Shur, and J. G. Shaw, IEEE Trans. Electron Device, vol. 36, pp. 2764, 1989.
[31] C. Hyun, M. S. Shur, M. Hack, Z. Yaniv, and V. Cannella, Appl. Phys. Lett. 45, pp. 1202, 1984.
[32] N. Lusting et al., Mater. Res. Soc. Symp. Proc. 118, pp. 267, 1988.
[33] Martin J. Powell, IEEE Transactions on Electron Devices. Vol. 36, pp. 2753, 1989.
[34] M. J. Powell et al., J. Appl. Phys., 53, pp. 5068-5078, 1982.
[35] G. Myburg and R. Swanepole, J. Non-Crystalline Solid, 89, pp. 13, 1987.
[36] J. Tauc, in : Amphous and Liquid Semiconductors, ed. by J. Tauc(Plenum Press, 1974), pp. 175.
[37] A. J. Snell, K. D. Mackenzie, W.E. Spear, P.G. Le Comber, and A. J. Hughes, Appl. Phys., 24, pp. 357, 1981.
[38] W. Z. Manookian and J. I. B. Wilson, IEE Proc., 133, pp153, 1986.
[39] Donald. Smith et al., J. Electrochem. Soc., 137, pp. 614-623, 1990.
[40] C. C. Tsai et al., J. Appl. Phys. 59, pp. 2998, 1986.
[41] A. Matsuda and K. Tanaka, J. Appl. Phys. 60, pp. 2351, 1986..
[42] Z. E. Smith, Amorphous Silicon and Related Materials, pp. 409-460.
[43] P. G. Le Comber and W. E. Spear, philo. Mag. Letters, 53, L1, 1986.
[44] N. B. Googman and H. Fristsche , Pilos, Mag. B 421, pp. 149, 1980.
[45] Hirabayashi, I. and Morigaki, K., J. Non-Cryst. Solids, 59/60, pp. 430, 1983.
[46] Hirabayashi, I. and Morigaki, K., J. Non-Cryst. Solids, 59/60, pp. 133, 1983.
[47] Morigaki. K. et al., Solid Stata Commum. 32, pp. 795, 1979.
[48] S. H. Glarum, J. Chem. Phys. 33, pp. 1371, 1960.
[49] Warren B. Jackson et al., Amorphous Silicon and Related Materials, pp. 247-295, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔