跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林如怡
研究生(外文):Ru-Yi Lin
論文名稱:福山地區林木種子苗更新與微氣候的關係
論文名稱(外文):The Relationship of the Regeneration of Seedlings and Microclimate in Fushan Forest
指導教授:夏禹九夏禹九引用關係洪富文洪富文引用關係
指導教授(外文):Yue-Joe HsiaFu-Wen Horng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:70
中文關鍵詞:種子苗更新孔隙微氣候
外文關鍵詞:seedlingregenerationgapmicroclimate
相關次數:
  • 被引用被引用:8
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本試驗於台灣東北部的福山試驗林進行,調查人造森林孔隙內冠層及次冠層樹種的種子苗出現、存活及高生長情形與微氣候變化的關係,及孔隙內地被層的有無對種子苗更新的影響。本試驗的目的在於探討孔隙環境下種子苗更新與微氣候的關係。試驗結果顯示,種子苗的組成與鄰近森林的組成不同。不同環境下,新增種子苗數量並沒有差異,但同一環境的宿存種子苗數因樹種不同而有差別。孔隙環境中,地被層的有無對各樹種種子苗數量並沒有影響,但在無地被層的孔隙環境下,柃木的新增種子苗較其他樹種多。所有種子苗中,死亡比率最高的是柃木(56%)。在有地被層遮覆的孔隙區種子苗死亡數最多(約50%),死亡小苗的高度大多在5cm以下。所有新增種子苗在無地被層的孔隙環境中高生長情況最好。
孔隙環境的微氣候變化主要受大環境的氣候所影響。各處理環境中以無地被層的孔隙區的微氣候因子變化幅度最大。夏季晴天正午在孔隙區的地際日輻射量可達600μmol/㎡s,陰雨天約300μmol/㎡s,同一季節下林緣及林內區所受輻射量約孔隙區的1/6。冬季陰雨天正午在無地被層孔隙區的地際日輻射量約60μmol/㎡s,有地被層孔隙區及林內區的日輻射量相近,僅約20μmol/㎡s。地際的氣溫和地下土溫變化趨勢相近,無地被層孔隙區的日溫差最大可達38.0℃,最高氣溫為53.6℃,最低溫發生在林內區為4.7℃。土溫的變化幅度較氣溫小,最高土溫發生在無地被層孔隙區為43.5℃,最低土溫發生在有地被層孔隙區為8.1℃,日土溫差以林內區最緩和,七月至一月間均不超過3℃。
孔隙中地被層會影響種子苗受光情形,有地被層處中午的PPFD僅約4μmol/㎡s,無地被層處約1000μmol/㎡s,此外,受光量愈大的環境,所接受的短波輻射較多,光質的紅光/遠紅光比值也越高,在無地被層孔隙的地際處最高為1.141﹔在有地被層的孔隙內最低為0.3948。
從種子苗出現、存活和生長情形和微氣侯的變化,可知生育地環境對種子苗更新的影響和微氣候有密切關係。
The emergence, survival and growth of seedlings of canopy and subcanopy tree species in man made gaps were investigated at the Fushan Experimental forest. Plots in the gaps with ground cover removal treatment, no ground cover removal, and adjacent inactive forest were set up to examine the influence of microclimate and ground cover on the compositions and survival of seedlings.
The result indicated that compositions of seedlings were different between gaps and inactive forest. Amounts of recruited seedlings were indifferent to the different micro-sites. Numbers of existed seedlings in different micro-sites, however, were different in terms of species composition. Within the gaps, the existence of a ground vegetation cover showed no effect on the number of seedling with respect to each tree species. With the removal of ground cover, Eurya spp. outnumbered other tree species. Survival rate of Euryp spp. (44%) was also the lowest among all the tree species. Survival rates of seedlings were lower in plots with no ground cover removal than other two treatments. Most seedling death occurred when the seedling height was less than 5 cm. Height growth of seedlings in plots with ground cover removal was the best among the three treatments.
The microclimate of forest gaps is, of course, controlled by the prevailing large- scale climate. Variations of microclimate within plots with ground cover removal were greatest among all the treatments. In the summer, quantum fluxes (PPFD) at ground levels in the gaps could reach 600 μmole/m2/s under clear sky and 300 μmole/m2/s when it was overcast. Quantum fluxes in the gap opening were six times higher than that at gap edges and under the forest canopy. In the winter, ground level quantum fluxes in gaps with ground cover removal were down to 60 μmole/m2/s at noon when the sky is overcast. Ground level radiation in plots without ground cover removal were the same amount as under forest canopy with a value down to 20 μmole/m2/s. The existence of a dense ground cover which occurs after the gap opening has a dominant effect on the survivability and growth of seedlings. Instantaneous measurement of the PPFD in the noon indicated that the flux could reach as high as 1000 μmole/m2/s at plots without ground covers and as low as 4 μmole/m2/s at plots with dense ground covers. The red/far-red light intensity ratio (R/FR) was 1.141 at plots without ground covers and dropped to 0.3948 at plots with dense ground covers.
Measurements of ground level air temperature and soil temperature in forest gap openings showed considerable variations comparing with sites under the close forest canopy. Daily ground level air temperature range reached 38oC, with a maximum air temperature of 53.6 oC, at plots without ground covers. The lowest air temperature was recorded as 4.7 oC at the site in the closed forest. The pattern of soil temperature was similar as the air temperature with smaller variation ranges. Maximum soil temperature was 43.5 oC at plots without ground covers and minimum soil temperature (8.1 oC) occurred at plots with dense ground covers. The daily range of soil temperature was lowest under close forest cover, the ranges were less than 3 oC both in January and in July. As a conclusion, the microenvironment of the habitat of tree seedlings has close relationships with microclimate as well as the regeneration of tree seedlings.
目錄
壹、 前言…………………………………………………….1
貳、 前人研究……………………………………………….3
參、 研究方法……………………………………………...11
肆、 結果…………………………………………...….…...23
伍、 討論…………………………………………..……….54
參考文獻……………………………………….………........……63
附錄一 種子苗名錄……………………………………......….69
圖目錄
圖一 樣區位置圖……..……………………………………12
圖二 樣區配置圖…………………………………………..16
圖三 熱電偶溫度計電路結構圖………………………..…19
圖四 主要樹種新增種子苗平均存活時間………………...35
圖五 種子苗死亡高度與數量分布情形..……………..…...35
圖六 主要樹種種子苗死亡高度…………………………...37
圖七 主要樹種種子苗高生長情形..……………..………...37
圖八 各處理環境平均地際氣溫變化.……………………..39
圖九 各處理環境地下2cm與地下5cm平均土溫……...…..39
圖十 各處理環境平均地下2cm土溫……….…….….…… 42
圖十一 夏季(陰雨天)日輻射量的變化………...……….....…45
圖十二 冬季(陰雨天)日輻射量的變化.…….……….....…….45
圖十三 冬季(陰雨天)平均地際氣溫、土溫變化………....…46
圖十四 夏季(陰雨天)平均地際氣溫、土溫的變化……........48
圖十五 夏季(晴天)日輻射量的變化..………..……..……......49
圖十六 夏季(晴天)平均地際氣溫、土溫變化…………........50
圖十七 各處理環境光譜圖…………………….……….........53
表目錄
表一 試驗期間氣象資料…………………………………............13
表二 樣區試驗處理………………………………………............15
表三 1998年3月~1999年2月間試區所有種子苗的數量變化..…24
表四 宿存種子苗的棲地與樹種分布.……………………...........26
表五 主要樹種的宿存種子苗對處理環境效應的比較分析……27
表六 不同處理環境對宿存種子苗數量的效應比較….…...........27
表七 種子苗於各處理環境與樹種分布情形……………............28
表八 主要樹種的新增種子苗對處理環境效應的比較分析……30
表九 不同處理環境對新增種子苗數量的效應比較……............30
表十 主要樹種的新增種子苗對地被層效應的比較分析............31
表十一 地被層有無對主要樹種新增種子苗的效應比較分析.…...32
表十二 主要樹種新增種子苗分布環境…………………................32
表十三 所有種子苗死亡比率……………………...…….................36
表十四 各處理環境地際氣溫比較………………………................40
表十五 各處理環境土溫比較…………………………...............….43
表十六 各處理環境地際PPFD值及RA比值……….….....................52
李玉琴,1992,福山地區低海拔闊葉樹林孔隙更新與林分動態之研究。臺灣大學森林學研究所資源保育組碩士論文。
李學勇,1976,光照對於林木種子發芽的影響。中華林學季刊,9(2) : 51-61。
林則桐、馬復京、張乃航,1995,福山試驗林的植物社會與天然更新之研究。林業試驗所百週年慶學術研討會論文集,頁71-82。
林國銓、洪富文、游漢明、馬復京,1994,福山試驗林闊葉林生態系生物量與葉面積指數的累積與分布。林業試驗所研究報告季刊,9(4) : 299-315。
林登秋、林則桐、江智民、夏禹九、金恆鑣,1999,颱風對台灣東北部天然闊葉樹林林冠干擾之研究。中華林學季刊,32(1) : 67-78。
周順軍,1995,臺灣北部福山地區低海拔闊葉森林地被植物及樹種小苗分佈類型之研究。臺灣大學植物學研究所碩士論文。
洪富文、游漢明、馬復京,1995,1994年颱風使福山闊葉林的年枯落物量加倍。林業試驗所研究報告季刊,10(4) : 485-491。
洪富文、游漢明、馬復京、張慧玲,1994,福山次生樟櫧林的果實雨。林業試驗所研究報告季刊,9(4) : 339-347。
馬復京、張乃航,1996,福山天然闊葉林的更新。台灣省林業試驗所簡訊,3 : 3-6。
馬復京、張乃航、游漢明、許原瑞、洪富文,未發表,1994年颱風在福山試驗林造成的孔隙及其更新生長。
陳子英,1995,臺灣北部楠櫧林帶櫧木林型優勢樹種天然更新方式之研究。林業試驗所百週年慶學術研討會論文集,頁83-95。
曾維宏,1994,南仁山區低海拔亞熱帶雨林林隙更新之研究。國立台灣大學植物學研究所碩士論文。
張乃航、馬復京、游漢明、許原瑞,1998,福山地區次生闊葉林土壤種子庫及幼苗動態。台灣林業科學,13(4) : 279-289。
賴宜鈴,1996,南仁山亞熱帶雨林小苗動態及地被層植物組成之研究。國立台灣大學植物學研究所碩士論文。
蘇鴻傑,1984a,臺灣天然林氣候與植群型之研究(一):氣候因子變異之分析。中華林學季刊,17(3):1-14。
蘇鴻傑,1984b,臺灣天然林氣候與植群型之研究(二):山地植群帶與溫度梯度之關係。中華林學季刊,17(4):57-73。
蘇鴻傑,1985,臺灣天然林氣候與植群型之研究(三):地理氣候區之劃分。中華林學季刊,18(3):33-44。
蘇鴻傑,1987,森林生育地因子及其定量評估。中華林學季刊,20(1):1-14。
Augspurger, C. K., 1984, Light requirements of neotropical tree seedling : a comparative study of growth and survival. Journal of Ecology, 72 : 777-795.
Bazzaz, F. A., 1996, Plants in changing environment. Cambridge university Press.
Black, T. A., 1977, Micrometeorological Studies of Douglas Fir. In J. J. Landsberg and C. V. Cutting(ets.), Environmental Effects on Crop Physiology, p.57-73. Academic Press, U. K. ,
Bourcher, D. H., John, H. V., Maria, A.M., Nelson, Z., and Ivette P., 1994, Resistance and resilience in a directly regenerating rainforest : Nicaraguan trees of the Vochysiaceae after Hurrican Joan. Forest Ecology and Management, 68 : 127-136.
Brokaw, N. V. L. and S. M. Scheiner., 1989, Species composition in gaps and structure of a tropical forest. Ecology, 70(3) : 538-541.
Canham, C. D., 1989, Different responses to gaps among shade - tolerant tree species. Ecology, 70(3) : 548-550.
Chazdon, R., R. Pearcy, D. Lee, and N. Fetcher, 1996, Chapetr 1 : Photosynthetic responses of tropical forest plants to contrasting light environment. InTropical Forest Plant Ecophysiology, S. S. Mulkey, R. L. Chazdon and A. P. Smith(ets.). Chapman & Hall, USA.
Chen, J., J. F. Flanklin and T. A. Spies, 1993, Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63 : 219-237.
Chen, J., J. F. Flanklin and T. A.Spies, 1995, Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications, 5(1) : 74-86.
Clark, D. B. and D. A. Clark. 1993. Comparative analysis of microhabitat utilization by sapling of nine tree species in neotropical rain forest. Biotropica, 25(4) : 397-407.
Connel, J. H., 1989, Some processes affecting the species composition in forest gaps. Ecology, 70(3) : 560-562.
Dalling J. W., S. P. Hubbell, and K. Silvera, 1998, Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecology, 86 : 674-689.
Denslow, 1980, Gap partitioning among tropical rainforest trees. Biotropica, 12 : 47-55.
Everham, E. M., R. W. Myster, and E. Vandegenachte., 1996., Effects of light, moisture, temperature, and litter on the regeneration of five tree species in the tropical montane wet forest of Puerto Rico. Amercan Journal of Botany, 83(8) : 1063-1068.
Fenner, M., 1985, Seed Ecology. Chapman & Hall, UK.
Garwood N.C., 1989, Tropical soil seed banks : a review. In M. A. Leck, V. T. Parkar and R. C. Simpson(ets.), Ecology of soil seed bank, p.149-209. Adademic Press, San Diego, U.S.A..
Gomez-Pompa, A., T. C. Whitmore and M.Hadley(ets.), 1991, Rain Forest Regeneration and Management. UNESCO, France.
Grime, J. P., 1979, Plant Strategies and Vegetation Processes. John Wiley & Sons, Ltd, UK..
Grubb P.T., 1996, Rainforest dynamics : the need for new paradigms. Tropical Rainforest Research - Current Issues, p215-233. Kluwer Adademic Publishers.
Kazuhiko, H., W. Suzuki, and S. Sasaki, 1997, Impacts of secondary seed dispersal and herbivory on seedling survival in Aesculus turbinata. Journal of Vegetation science, 8:735-742.
Kitajima, K., 1996, Chapter 19 : Ecophysiology of tropical tree seedlings. Tropical Forest Plant Ecophysiology, edited by Stenphen S. Mulkey, Robin L. Chazdon and Alan P. Smith. Chapman & Hall, USA.
Kozlowski T. T., P. J. Kramer, S. G. Pallardy, 1991, The Physiological Ecology of Woody Plants, p70-81. Academic press, Inc..
Liebman, M. and D. Liebman, 1989, Forests are not just Swiss cheese : canopy stereogeometry of non - gap in tropical forest. Ecology, 70(3) : 550-552.
Molofsky, J. and B. L. Fisher, 1993, Habitat and predatation effects on seedling survival and growth in shade-tolerant tropical trees. Ecology, 74(1) : 261-265.
Negi, A. S., G. C. S. Negi, and S. P. Singh, 1996, Establishment and growth of Quercus floribunda seedlings after a mast year. Journal of Vegetation Science, 7 : 559-564.
Nunez-Farfan J. and R. Dirzo, 1988, Within-gap spatial heterogeneity and seedling performance in a Mexican tropical forest. Oikos, 51 : 274-284.
Osunkjoya, O. O., J. E. Ash, M. S. Hopkins, and A. W. Graham, 1992, Factors affecting survival of treeseedling in North Queensland rainforest. Oecologia, 91 : 569-578.
Richards P.W., 1996, The Tropical Rain Forest(2 nd ed.), p 49-69 & p206-236. Cambridge University Press.
Schupp, E. W., H. F. Howe, and D. J. Levey, 1989, Arrival and survival in tropical treefall gaps. Ecology, 70(3) : 562-564.
Schupp, E.W. 1995. Seed - seedling conflicts, habitat choice, and pattern of plant recruitment. American Journal of Botany, 82(3) : 399-409.
Seiwa, K., 1997, Variable regeneration behariour of Ulmus davidiana var. japonica in response to disturbance regime for risk spreading. Seed Science Research, 7 : 195-207.
Van der Meer, P., F. J. Sterck, and F. Bonger, 1998, Tree seedling performance in canopy gaps in a tropical rain forest at Nouragues, French Guiana. Journal of Tropical Ecology, 14 : 119-137.
Whitmore, T. C., 1989, Canopy gaps and the two major groups of forest trees. Ecology, 70(3) : 536-538.
Whitmore, T. C., 1991, Tropical rain forest dynamics and its implications for management. In A. Gomez-Pompa, T. C. Whitmore and M.Hadley(ets.), Rain Forest Regeneration and Management, p. 67-89. UNESCO, France.
Yamamoto, S. I., 1992, The gap theory in forest dynamics. Botanic Magazine of Tokyo, 105 : 375-383.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top