(3.237.234.213) 您好!臺灣時間:2021/03/09 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊東記
論文名稱:以電漿化學氣相沈積法蒸鍍SiO2及Si(C,N)薄膜之研究
論文名稱(外文):Plasma-Enhanced Chemical Vapor Deposition of SiO2 and Si(C,N) Thin Films
指導教授:郭東昊
指導教授(外文):Kuo Dong-Hau
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:83
中文關鍵詞:物理氣相沈積法
外文關鍵詞:PVD
相關次數:
  • 被引用被引用:3
  • 點閱點閱:775
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薄膜技術目前廣泛應用於半導體工業及精密機械上,由於利用薄膜技術所生產的產品具有高附加價值,使薄膜技術與材料被廣泛的研究。本研究是利用電漿化學氣相沈積法,於低溫低壓下,在矽晶片及康寧玻璃上成長SiO2介電膜以及Si(C,N)硬質膜,藉著製程參數(R.F.功率、基板溫度、H2、CO2、N2流量及HMDSN飽和瓶溫度)的改變,來探討鍍膜的成長特性、硬度、殘留應力、刮痕臨界荷重及折射率。
實驗結果顯示,PECVD法所蒸鍍的SiO2鍍膜為一表面平坦且緻密的非晶質結構,與玻璃間有良好的的附著性。SiO2鍍膜成長速率隨基板溫度增加而減小,隨R.F.功率和飽和瓶溫度增加而增加,成長速率可控制於0.5μm/hr ~6μm/hr。另外,SiO2鍍膜成長速率受H2流量的影響較小,但CO2流量的改變會使成長速率變的複雜。鍍膜硬度受R.F.功率和基板溫度影響較大,在基板溫度400℃時有最大的硬度值可達16 GPa。殘留應力隨R.F.功率增加而降低,隨基板溫度、H2流速及飽和瓶溫度增加而增加,受CO2流量影響不大。鍍膜的刮痕臨界荷重隨H2及CO2流量增加而增加,此與硬度及殘留應力有關。在不同的條件下所得的鍍膜為一透明無色的膜,其折射率在1.48~1.62之間。
而在Si(C,N)鍍膜特性方面,PECVD所蒸鍍的Si(C,N)鍍膜亦是平坦且緻密的非晶質結構。鍍膜成長速率隨R.F.功率、H2流量及飽和瓶溫度的增加而增加,隨基板溫度升高而降低,最大成長速率達~6μm/hr。鍍膜硬度受R.F.功率及基板溫度影響最大,最大硬度值為18 GPa。Si(C,N)鍍膜亦承受一壓縮應力,隨R.F.功率、H2及N2流量的增加而增加。鍍膜的刮痕臨界荷重隨R.F.功率及基板溫度的增加而增加,隨N2流量增加而降低,受H2流量的影響較小,此受硬度及殘留應力的大小有關。
Thin film technology has been widely applied in semiconducting and electro-optic industries and on the fine machinery to have materials in a small size and/or in new functions with high pay-off. In this study, plasma-enhanced chemical vapor deposition (PECVD) technique was used to deposit the dielectric SiO2 films and the hard Si(C,N) films on the silicon wafers and glass plates under the coating conditions of low temperature and low pressure. This research was focused on the evaluations of film growth, hardness, residual stress, scratch resistance and refractivity, by changing the experimental parameters including R.F. power, substrate temperature, and the flow rates of H2, CO2, N2, and HMDSN (hexamethyldisilazane).
The results showed the PECVD-SiO2 film was smooth, dense, and structurally amorphous. Its growth rate decreased as the substrate temperature increased, but increased as the R.F. powder increased. The growth rate was in the range of 0.5μm/hr—6μm/hr. The change of H2 flow rate did not have an effect on the SiO2 growth rate, but did in a complex way for the CO2 flow rate. In respect of hardness, R.F. power and substrate temperature had an apparent influence with a maximum hardness of 16 GPa on the substrate temperature of 400C. Regarding to residual stress, R.F. power caused it decreased, but substrate temperature, H2 flow rate, and HMDSN flow rate increased it. About the critical force on the scratch tests, it was related to the amounts of H2 and CO2, and the properties of hardness and residual stress. The SiO2 films had a refractive index in the range of 1.48~1.62.
The results showed the PECVD-Si(C,N) film was also smooth, dense, and structurally amorphous. Its growth increased with R.F. power and H2 and HMDSN flow rates, but decreased with the substrate temperature. The growth rate was also in the range of 0.5μm/hr—6μm/hr. The film hardness was influenced by the R.F. power and substrate temperature, with a maximum value of 18 GPa. The film was under compressive stress after deposition. This residual stress was increased with the R.F. power and the H2 and N2 flow rates. About the critical force on the scratch tests, it increased with R.F. power and substrate temperature, but decreased with N2 flow rate with the H2 flow rate in a minor effect. The results in the scratch test could be related to the film hardness and residual stress.
目 錄
中文摘要 ………………………………………………………………Ⅰ
英文摘要 …………………………………………...………….……..Ⅲ
目錄 …………………………………………...……………………. Ⅴ
圖目錄 …………………………………………………..………….. Ⅷ
表目錄 …………………………………………………..…………..XI
第一章 緒論 …………………………………………………………1
1.1 前言 ……………………………………………………1
1.2 研究目的與內容 …………………………………………2
第二章 理論基礎及前人研究 …………………………………………4
2.1 電漿輔助化學氣相沈積技術 ……………………………4
2.1.1 電漿原理 …………………………………………5
2.1.2 熱力學分析 ………………………………………7
2.1.3 PECVD反應動力學 ……………………………8
2.2 SiO2薄膜前人研究 ………………………………………11
2.2.1 常壓CVD法製備SiO2 …………………………12
2.2.2 低壓CVD法製備SiO2 …………………………13
2.2.3 高溫CVD法製備SiO2 …………………………14
2.2.4 電漿CVD法製備SiO2 …………………………14
2.2.5 其他有機金屬化合物製備SiO2薄膜 …………15
2.2.6 PECVD-SiO2製程參數影響 ……………………18
2.3 SiN薄膜前人研究 ………………………………………20
2.3.1 PECVD法製備SiN介電薄膜 ………………20
2.3.2 傳統CVD法製備Si3N4薄膜 ……………………23
2.3.3 PECVD-SiN鍍膜組成 …………………………23
2.3.4 PECVD-SiN鍍膜的含氫量 ……………………24
第三章 實驗方法及步驟 ……………………………………………25
3.1 實驗流程 …………………………………………………25
3.2 系統的設計與安裝 ………………………………………26
3.3 材料的選擇 ………………………………………………28
3.4 蒸鍍條件與步驟 …………………………………………29
3.5 分析與測試 ………………………………………………31
第四章 結果與討論─SiO2介電膜 …………………………………33
4.1 SiO2鍍膜結構分析 ………………………………………33
4.2 SiO2鍍膜的成長特性 ……………………………………34
4.2.1 鍍膜的沈積速率 …………………………………34
4.2.2 鍍膜表面形態 ……………………………………38
4.3 SiO2鍍膜的機械性質 ……………………………………39
4.3.1 納米硬度與彈性係數試驗 ………………………39
4.3.2 鍍膜的殘留應力 …………………………………43
4.3.3 鍍膜的刮痕臨界荷重 ……………………………43
4.4 SiO2鍍膜的折射率 ………………………………………49
第五章 結果與討論─Si(C,N)複合硬質膜 …………………………52
5.1 Si(C,N)鍍膜結構分析 ……………………………………52
5.2 Si(C,N)鍍膜的成長特性 …………………………………53
5.2.1 Si(C,N)鍍膜的成長速率 ………………………53
5.2.2 鍍膜表面形態 ……………………………………59
5.2.3 Si(C,N)鍍膜成份分析……………………………60
5.3 Si(C,N)鍍膜的機械性質 …………………………………60
5.3.1 Si(C,N)納米硬度與彈性係數試驗 ……………60
5.3.2 Si(C,N)鍍膜的殘留應力 ………………………67
5.3.3 Si(C,N)鍍膜的刮痕臨界荷重 …………………68
第六章 結論 …………………………………………………………72
參考文獻 ………………………………………………………………74
致謝 ……………………………………………………………………83
圖目錄
圖2.1 自身偏壓對電為分佈的影響 …………………………………6
圖2.2 直流輝光放電中發光區及暗區示意圖 ………………………6
圖2.3 電漿輔助化學氣相沈積法反應示意圖 ………………………9
圖2.4 熱化學氣相沈積法(實線)和電漿化學氣相沈積法(虛線)的能 量圖 …………………………………………………………9
圖2.5 氮化矽沈積速率與R.F.功率關係圖 …………………………22
圖2.6 氮化係沈積速率與基板沈積溫度關係圖 …………………22
圖3.1 PECVD設備及管路示意圖 …………………………………27
圖4.1 SiO2鍍膜的XRD分析圖 ……………………………………33
圖4.2 基板溫度與R.F.功率對SiO2鍍層成長速率的影響 ………36
圖4.3 基板溫度與CO2氣體流速對SiO2鍍層成長速率的影響 .…36
圖4.4 基板溫度與H2氣體流速對SiO2鍍層成長速率的影響 ……37
圖4.5 飽和瓶溫度與基板溫度對SiO2鍍層成長速率的影響 ……37
圖4.6 SiO2鍍膜的表面及截面的SEM顯微照相圖 ………………38
圖4.7 基板溫度與R.F.功率對SiO2鍍層硬度的影響 ……………41
圖4.8 基板溫度與CO2氣體流速對SiO2鍍層硬度的影響 ………41
圖4.9 基板溫度與H2氣體流速對SiO2鍍層硬度的影響 …………42
圖4.10 飽和瓶溫度與基板溫度對SiO2鍍層硬度的影響 …………42
圖4.11 基板溫度與R.F.功率對SiO2鍍層殘留壓應力的影響 ……45
圖4.12 基板溫度與CO2氣體流速對SiO2鍍層殘留壓應力的影響...45
圖4.13 基板溫度與H2氣體流速對SiO2鍍層殘留壓應力的影響 …46
圖4.14 飽和瓶溫度與基板溫度對SiO2鍍層殘留壓應力的影響 …46
圖4.15 基板溫度與R.F.功率對SiO2鍍層刮痕臨界荷重的影響 …47
圖4.16 基板溫度與CO2氣體流速對SiO2鍍層刮痕臨界荷重影響...47
圖4.17 基板溫度與H2氣體流速對SiO2鍍層刮痕臨界荷重影響 …48
圖4.18 飽和瓶溫度與基板溫度對SiO2鍍層刮痕臨界荷重影響 …48
圖4.19 SiO2鍍膜刮痕痕跡及破壞圖 ………………………………50
圖4.20 R.F.功率對SiO2鍍層折射率的影響 ………………………50
圖4.21 基板溫度對SiO2鍍層折射率的影響 ………………………51
圖4.22 飽和瓶溫度對SiO2鍍層折射率的影響 ……………………51
圖5.1 Si(C,N)鍍膜的XRD分析圖 …………………………………52
圖5.2 R.F.功率與基板溫度對Si(C,N)鍍層成長速率的影響 ……56
圖5.3 H2氣體流量與基板溫度對Si(C,N)鍍層成長速率的影響 ....56
圖5.4 N2氣體流量與基板溫度對Si(C,N)鍍層成長速率的影響 .…57
圖5.5 飽和瓶溫度與基板溫度對Si(C,N)鍍層成長速率的影響 ….57
圖5.6 飽和瓶溫度與H2氣體流速對Si(C,N)鍍層成長速率的影響...58
圖5.7 飽和瓶溫度與N2氣體流速對Si(C,N)鍍層成長速率的影響..58
圖5.8 Si(C,N)鍍膜的表面及截面的SEM顯微照相圖 ……………59
圖5.9 Si(C,N)鍍膜成份分析 ………………………………………61
圖5.10 R.F.功率與基板溫度對Si(C,N)鍍層硬度的影響 …………64
圖5.11 H2氣體流量與基板溫度對Si(C,N)鍍層硬度的影響 ……64
圖5.12 N2氣體流量與基板溫度對Si(C,N)鍍層硬度的影響 ……65
圖5.13 飽和瓶溫度與基板溫度對Si(C,N)鍍層硬度的影響 ………65
圖5.14 飽和瓶溫度與H2氣體流速對Si(C,N)鍍層硬度的影響 …66
圖5.15 飽和瓶溫度與N2氣體流速對Si(C,N)鍍層硬度的影響 …66
圖5.16 R.F功率與基板溫度對Si(C,N)鍍層殘留壓應力的影響 ...67
圖5.17 H2氣體流量與基板溫度對Si(C,N)鍍層殘留壓應力影響 ...68
圖5.18 N2氣體流量與基板溫度對Si(C,N)鍍層殘留壓應力影響 ...68
圖5.19 R.F功率與基板溫度對Si(C,N)鍍層刮痕臨界荷重影響 …70
圖5.20 H2流量與基板溫度對Si(C,N)鍍層刮痕臨界荷重影響 …..70
圖5.21 N2流量與基板溫度對Si(C,N)鍍層刮痕臨界荷重影響 …..70
圖5.22 Si(C,N)鍍膜刮痕痕跡及破壞圖 ……………………………71
表目錄
表2.1 低溫電漿的發生法與其物理因子……………………………10
表2.2 在電漿區中一些可能的反應…………………………………10
表2.3 商業上利用CVD法蒸鍍SiO2薄膜的各項物理性質比較…16
表2.4 利用CVD法蒸鍍SiO2 的沈積條件與各種先驅體…………17
1. "Deposition Technologies for Films and Coatings" ed. by R. F. Bunshah, Noyes Dublications, 1982.
2. "Glow Discharge Process" by Brian Chapman (1980) Elsevier.
3. Mitsuharu Konuma, "Film Deposition by Plasma Techniques", Springer-Verlag Berlin Heidelberg 1992.
4. A. von Engel: Electric Plasmas: Their Nature and Uses (Taylor and Francis, London 1983)
5. H. Schlichting, Boundary Layer Theory 6thed McGraw-Hill Book Co., (1968) p. 26, 27, 89, 94.
6. 高正雄譯著,超LSI時代─電漿化學,復漢出版社印行,(1984)p. 15
7. S. Veprek,"Statistical model of chemical reactions in nonisothermal low pressure plasma", The Journal of Chemical Physics., 57(2) (1972) p. 952-959.
8. S. Sivaram," Chemical Vapor Deposition" , Van Nostrand Reinhold, 1995.
9. W. S. Rees, Jr., "CVD of Nonmetals," VCH Publishers, Inc., New York, NY , USA(1996).
10. J. Mort, "Plasma Deposition Thin Films, " CRC Press, Inc., USA, 1986.
11. K. Watanabe, T. Tanigaki and S. Wakayama, "The Properties of LPCVD SiO2 Film Deposited by SiH2Cl2 and N2O Mixtures," J. Electrochem. Soc., vol. 128 [12]2630-2635, 1981.
12. William J. Patrick, Geraldine Cogin Schwartz, Jonathan D. Chapple-Sokol, and Roy Carruthers, "Plasma-Enhanced Chemical Vapor Deposition of Silicon Dioxide Films Using Tetraethoxysilane and Oxygen: Characterization and Properties of Films," J. Electrochem. Soc., 139 [9], 1992.
13. S. B. Desu, J. Am. Ceram. Soc., 72, 1615 (1989).
14. K. Ramkumar and A. N. Saxena, "Stress in SiO2 Films Deposited by Plasma and Ozone Tetraethylorthosilicate Chemical Vapor Deposition Processes," J. Electrochem. Soc., 139 [5], 1992.
15. F. Fracassi, R. d’Agostino and P. Favia, "Plasma-Enhanced Chemical Vapor Deposition of Organosilicon Thin Films from Tetraethoxysilane-Oxygen Feeds," J.Electrochem. Soc., Vol. 139, No. 9, September 1992.
16. W. Kern and R. S. Rosel, "Advance in Deposition Processes for Passiveation Films," J. Vac. Sci. Technol., 14,1082 (1977).
17. J. D. Chapple-Sokol, C. J. Giunta, R. G. Gordon, J. Electrochem. Soc., 136, 2993, 1987.
18. K. Shankar, "Thermal CVD Equipment: Competition Heats Up, " Solid State Technol., p. 47 April, 1991.
19. K. Fujino, Y. Nishimoto, N. Tokumasu and K. Maeda, "Low Temperature, Atmospheric Pressure CVD Using Hexamethyldi-siloxane and Ozone," J. Electrochem. Soc., 139 [8] 2282, 1992.
20. F. S. Becker, D. Pawlik, H. Schäfer and H. Staudigl, J. Vac. Sci. Technol., B4 [3] 732 (1986).
21. I. T. Emesh, G. D’Asti, J. S. Mercier, and P. Leung, This Jourmal, 136, 3404 (1989).
22. S. B. Desu, C. H. Peng, T. Shi, and P. A. Agaskar, "Low Temperature CVD of SiO2 Films Using Novel Precursors," J. Electrochem. Soc. 139, 2682 (1992)
23. W. A. Pliskin, "Comparison of Dielectric Film Deposited by Various Methods," J. Vac. Sci. Technol. 14, 1064 (1977).
24. F. S. Becker, D. Pawlik, H. Schafer, and G. Standigl, "Process and Film Characterization of Low Pressure Tetraethylorthosilicate-borophosilicate Glass," J. Vac. Sci.Technol., B4, 732 (1986).
25. F. S. Becker, In Reduced Thermal Processing for VLSI., Ed. R. A. Levy, NATO, ASI, K—87, 8684, Plenum, New York, 1990.
26. F. S. Becker, D. Pawlik, H. Anzinger, A. Spitzer, J. Vac. Sci. Technol., B. 5, 1555, 1987.
27. G. Smolinskym, "The Low Pressure Chemical Vapor Deposition of Silicon Oxide Films in the Temperature Range 450℃ to 600℃ From a New Source: Diacteoxyditertiarybutoxysilane," Proc. 1986 Symp. VLSI Technol., San Diego, May, 1986.
28. B. M. Kemlage, in Chemical Vapor Deposition—8th Int. Conf. Ed. J. Blocher, Jr., G. E. Vuillard, G. Wahl, The Electrochemical Society, Pennington, U. K. 1981, p. 418.
29. Van de Ven, E. P. G. T. Solid State Technol., 24 [4] 167 (1981).
30. Summers, D., Solid State Technol., 26, 137, 1983.
31. Schanfield, S. and Bay, S., J. Electrochem. Soc., 131, 2202, 1984.
32. Dottarar, S. S., Plasma Processing, Mathad, G. S., Schwartz, G. C., and Smolinsky, G., Eds., Electrochemical Society, Pennington, N.J., 1983, 160.
33. Adams, A. C., Alexander, F. B., Capio, C. D., and Smith, T. E., J. Electrochem. Soc., 128, 1545.
34. R., E. Hollahan, J. Electrochem. Soc., 126, 930, 1979.
35. Sabin, E. W. and Ramiller, C. L., Plasma Processing, Eds. G. S. Mathad, G. C. Schwartz, and G. Smolinsky, Eds., Electrochemical Society, Pennington, N.J., 1983, 143,
36. R. S. Rosler, and G. M. Engle, Solid State Technol., 24 [4] 172 (1981).
37. I. Avigal, Solid State Technol., 26 [10] 217(1983).
38. J. E. Tong and K. Schertenluib, and Carpio, R. A., Solid State Technol., 27 [1] 161(1984).
39. J. Batey and E. Tierney, J. Appl. Phys., 60, 3136, 1986.
40. C. D. Dobson, A. Kiermasz, K. Beekman, R. J. Wilby, Semicon. Int. 1994, 17, 85.
41. C. Falcony, J. C. Alonso, A. Ortiz, M. Garcia, E. P. Zironi, J. Rickards, J. Vac., Sci. Tevhnol., A. 11, 2945, 1993.
42. D. R. Secrist and J. D. Mackenzie, "Deposition of Silica Films by the Glow Discharge Technique," J. Electrochem. Soc., 113, 914 (1966).
43. U. Mackens and U. Merkt, "Plasma Enhanced Chemical Vapor Deposition of Metal-Oxide-Semiconductor Structures on InSb," Thin Solid Films, 97, 53 (1982).
44. J. Woodward, D.C. Caneron, L.D. Irving, and G.R. Jones, Thin Solid Film, 85, 61, 1981.
45. U. Mackens and U. Merkt, Thin Solid Films, 97, 53, 1982.
46. E. B. Priestley and P. J. Call, Thin Solid Films, 69, 39, 1980.
47. S. P. Mukherjee and P. E. Evans, Thin Solid Films, 14, 105, 1972.
48. D. R. Secrist and J. D. Mackenzie, J. Electrochem. Soc., 113, 914, 1966.
49. S. W. Ing, Jr. and W. J. Davern, Electrochem. Soc., 112, 284, 1965.
50. F. Fracassi, R. d'Agostino, and P. Favia, "Plasma Enhanced Chemical Vapor Deposition of Organosilicon Thin Films From Tetraethoxy-silane-Oxygen Feeds, " J. Electrochem. Soc. 139, 2636 (1992).
51. F. Templier, L. Vallier, R. Madar, J.-C. Oberlin, R. A. B. Devine, Thin Solid Films, 241, 251 (1994).
52. G. Tochitani, M. Shimozuma, H. Tagashira, J. Vac. Sci. Technol. A. 11, 400, 1993.
53. A. K. Hochberg, D. L. O’Meara, J. Electrochem. Soc., 136, 1843 (1989).
54. A. K. Hochberg, D. A. Roberts, Mat. Res. Soc., Symp. Proc., 282, 569 (1993).
55. A. K. Hochberg, A. Lagendijk, D. L. O’Meara, Electrochem. Soc. Extended Abstr. 1988,88, 335.
56. L. M. Atagi, D. M. Hoffman, J. Lui, Z. Zheng, W.-K. Chu, R. R. Rubiano, R. W. Springer, D. C. Smith, Chem. Matr., 6, 360 (1994).
57. Adams, A. C., Alexander, F. B., Capio, C. D., and Smith, T. E., J. Electrochem. Soc., 128, 1545, 1981.
58. Hollahan, J. R., J. Electrochem. Soc., 126, 930, 1979.
59. Sabin, E. W. and Ramiller, C. L., Plasma Processing, Mathad, G. S., Schwartz, G. C., and Smolinsky, G., Eds., Electrochemical Society, Pennington, N. J., 1983, 143.
60. Takamatsu, A., Shibata, M., Sakai, H., and Yoshimi, T., J. Electrochem. Soc., 131, 1865, 1984.
61. Secrist, D. R. and Mackenzie, J. D., J. Electrochem. Soc., 113, 914, 1966.
62. Ing, S. W., Jr. and Davern, W., J. Electrochem. Soc., 112, 284, 1965.
63. Mukherjee, S. P. and Evans, P. E., Thin Solid Films, 14, 105, 1972.
64. Priestley, E. B. and Call, P. J., Thin Solid Films, 69, 39, 1980.
65. Macken, U. and Merkt, U., Thin Solid Films, 97, 53, 1982.
66. R. Gereth and W. J. Scherber, Electrochem. Soc., 119, 1248 (1972).
67. D. C. Bartle, D. C. Andrews,J. D. Grange, P. G. Harris, A. D. Trigg, and D. K. Wickenden, Vacuum, 34, 315 (1984).
68. Y. Ishii, T. Aoki, and S. Miyazawa, J. Vac. Sci. Technol., B2, 49 (1984).
69. M. J. Helix, K. V. Vaidyanathan, B. G. Streetman, H. B. Dietrich, and P. K. Chatterjee, Thin Solid Film, 55. 143 (1978).
70. P. M. Campbell and B. J. Baliga, Silicon Nitride Thin Insulating Films, Kapoor, V. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N. J., pp.150 (1983).
71. G. J. Valco and V. J. Kapoor, Silicon Nitride Thin Insulating Films, Kapoor, V. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N. J., pp.128 (1983).
72. K. Katch, M. Yasui, and H. Watanabe, Jpn. J. Appl. Phys. Pt. 2. Lett., 22, L321 (1983).
73. J. Woodward, D. C. Caneron, L. D. Irving, and G. R. Jones, Thin Solid Film, 85, 61 (1981).
74. R. Hezel, K. Blumenstock, and R. Schormer, J. Eelectrochem. Soc., 131, 1211 (1984).
75. K. Meada and H. Nakamura, Thin Solid Films, 112, 279 (1984).
76. D. Summers, Solid State Technol., 26, 137 (1983).
77. C. Blaauw, A. J. Spring Thorpe, S. Dzioba, and B. Emmerstorfer, J. Electron. Mater., 13, 251 (1984).
78. B. R. Soller, C. R. Snider, and R. F. Shuman, J. Electrochem. Soc., 131, 868 (1984).
79. R. Hezel and R. Svhorner, J. Appl. Phys., 52, 3076 (1981).
80. H. Watanabe, K. Katoh, and M. Yasui, Jpn. J. Appl. Phys., 23, 1 (1984).
81. A. K. Sinha, H. J. Levinstein, T. E. Smith, G. Quintana, and S. E. Haszko, J. Electrochem. Soc., 125, 601 (1978).
82. H. Dun, P. Pan, F. R. White, and R. W. Douse, J. Electrochem. Soc., 128, 1555 (1981).
83. R. S. Rosler, W. C. Benzing, and J. Baldo, Solid State Technol., 19(6), 45 (1976).
84. R. S. Rosler and G. M. Engle, Solid State Technol., 22(12), 88 (1979).
85. A. R. Reinberg, J. Electron. Mater., 8, 345 (1979).
86. C. Blaauw, J. Electrochem. Soc., 131, 1114 (1984).
87. C. L. Ramiller, Plasma Processing, Dieleman, J., Frieser, R. G., and Mathad, G. S., Eds., Electrochemical Society, Pennington, N.J., pp.491 (1982).
88. T. J. Cotler and J. Chapple-Sokol, "High Quality Plasma-Enhanced Chemical Vapor Deposition Silicon Nitride Films", J. Electrochem. Soc., 140 [7] 2071-2075 (1993.
89. S. S. Han, B. H. Jun, K. NO, and B. S. Bae, "Preparation of a-SiNx Thin Film with Low Hydrogen Content by Inductively Coupled Plasma Enhanced Chemical Vapor Deposition", J. Electrochem. Soc., 145 [2] 652-658 (1998).
90. E. P. G. T. van de Ven, Solid State Technol., 24(4), 167, 1981.
91. R. C. G. Swann, R. R. Mehta, and T. P. Cauge, J. Electrochem. Soc., 114, 713 (1967).
92. M. Konuma, in: Film Deposition by Plasma Techniques, Springer-Verlag, 1992.
93. H. E. Maes, G. Heyns, H. Remmerie, M. Hinoul, H. Loos, A. Van Calster, A. Lequesne, and K. Allaert, Silicon Nitride Thin Insulating Films, Kapoor, V. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N.J., pp.177(1983).
94. S. Yoshimi, N. Kajihara, M. Hirose, and Y. Osaka, J. Appl. Phys., 51, 5470 (1980).
95. D. B. Ilic, Hewlett-Packard J., 33, 24 (1982).
96. H. H. Madden, J. Electrochem. Soc., 128, 625 (1981).
97. R. Hezel and N. Lieske, J. Appl. Phys., 53, 1671 (1982).
98. H. E. Mase, J. Remmerie, M. Hinoul, R. Vlaeminck, and R. V. Berghe, Silicon Nitride Thin Insulating Films, Kapoor, V. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N.J., pp. 415 (1983).
99. F. Martinet, G. Guegan, and J. C. Jesionka, Silicon Nitride Thin Insulating Films, Kapoor, V.. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N.J., pp. 190 (1983).
100. T. E. Nagy, C. D. Fung, and W. H. Ko, Silicon Nitride Thin Insulating Films, Kapoor, V.. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N.J., pp. 167 (1983).
101. W. A. P. Claassen, W. G. J. N. Valkenburg, F. H. P. M. Habraken, and Y. Tamminga, J. Electrochem. Soc., 130, 2419 (1983).
102. P. S. Peercy and H. J. Stein, Silicon Nitride Thin Insulating Films, Kapoor, V. J. and Stein, H. J., Eds., Electrochemical Society, Pennington, N.J., pp. 3 (1983).
103. T. Yoshimi, H. Saksai, and K. Tanaka, J. Electrochem. Soc., 127, 1853 (1980).
104. M. J. Rand and D. R. Wonsidler, J. Electrochem. Soc., 125, 99 (1978).
105. R. Chow, W. A. Lanford, W. Ke-Ming. and R. S. Rosler, J. Appl. Phys., 53, 5630 (1982).
106. M. Maeda and H. Nakamura, J.Appl. Phys., 55, 3068 (1984).
107. R. B. Fair and R. C. Sun, IEEE Trans. Electron. Dev., 28, 83 (1981).
108. R. E. Anderson, IEEE Trans. Nucl. Sci., 26, 5180 (1979).
109. P. S. Peercy, H. J. Stein, B. L. Doyle, and S. T. Picraux, J. Electron. Mater.8, 11 (1979).
110. K. M. Mar and G. M. Samuelson, Solid State Technol., 23(4), 137 (1980).
111. W. A. Lanford and M. J. Rand, J. Appl. Phys., 49, 2473 (1978).
112. A. C. Adams, Solid State Technol., 26, 135 (1983).
113. Tencor P-1 Long Scan Profiler User Manual.
114. Milton Ohring, "The Material Science of Thin Films, " Academic Prsss, USA, 1992.
115. Yizhou Song, Taskeshi Sakurai, Koichi Kishimoto, Kazuhiko Maruta, Shigeharu Matsumoto and Kazno Kikuch, "Optical and structural properties of low-temperature PECVD ETMS SiOx thin films, " Thin Solid Films, 334, 92-97 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔