|
Bibliography [1] T. Feng. A survey of interconnection networks. IEEE Transaction on Computer Systems, C-30(12):12-27, Dec. 1981. [2] A. Grahram. Kronecker Products and Matrix Calculus: With Applications. Ellis Horwood Limited, 1981. [3] J. P. Hayes. Computer Architecture and Organization. McGraw Hill, 1988. [4] C. T. Ho. and S. L. Johnsson. Embedding meshes in boolean cubes by graph decomposition. Journal of Parallel and Distributed Computing, 8, pp. 328-338, 1990. [5] C. T. Ho, M. T. Raghunath, and S. L. Johnsson. An efficient algorithm for Gray-to-binary permutation on hypercubes. Journal of Parallel and Distributed Computing, 20, pp. 114-120, 1994. [6] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. [7] C.-H. Huang, J. R. Johnson, R. W. Johnson. A tensor product formulation of Strassen's matrix multiplication algorithm. Appl Math Letters, 3(3):67-71, 1990. [8] C.-H. Huang, J. R. Johnson, R. W. Johnson. Generating parallel programs from tensor product formulas: a case study of Strassen's matrix multiplication algorithm. In International Conference on Parallel Processing, volume III, pp. 104-108, 1992. [9] J. R. Johnson, R. W. Johoson, D. Rodriguez, and R. Tolimieri. A methodology for designing, modifying and implementing Fourier transform algorithms on various architectures. Circuits Systems Signal Process, 9(4):450-500, 1990. [10] R. W. Johnson, C.-H. Huang, J. R. Johnson. Multilinear algebra and parallel programming. Journal of Supercomputing, 5:189-218, 1991. [11] S. L. Johnsson. Communication efficient basic linear algebra computations on hypercube architectures. Journal of Parallel and Distributed Computing, 4, 2 pp. 133-172, Apr.1987. [12] S. L. Johnsson. and C. T. Ho Binary cube emulation of butterfly networks encodeed by Gray code. Journal of Parallel and Distributed Computing, 20 pp. 261-279, 1994. [13] S. D. Kaushik, S. Sharma, C.-H. Huang, J. R. Johnson, R. W. Johnson, and P. Sadayappan. An algebric theory for modeling direct interconnection networks. Technical Report OSU-CIS-RC-1/92-TR 5, Dept. of Computer and Information Science, The Ohio State University, Jan. 1992. Also in Proc. of Supercomputing'92, pp. 488-497. [14] S. D. Kaushik, S. Sharma, C.-H. Huang, J. R. Johnson, R. W. Johnson, and P. Sadayappan. An algebric theory for modeling direct interconnection networks. Journal of Information Science and Engineering, 12, 25-49, 1996. [15] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. The Benjamin/Cummings Publishers, Inc. 1994. [16] B. Kurnar, C.-H. Huang, P. Sadayappan, and R. W. Johnson. A tensor product formulation of Strassen's matrix multiplication algorithm with memory reduction. Scientific Programming, 4(4):275-289, 1995. [17] S. Lakshmivarahan. and S. K. Dhall. Analysis and Design of Parallel Algorithms. McGraw-Hill, Inc. 1990. [18] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays‧Trees‧Hypercubes. Morgan Kaufmann Publishers, Inc. 1992. [19] C. V. Loan. Computational Frameworks for the Fast Fourier Transform. SIAM, 1992. [20] J. A. Moore. and M. J. Quinn. Generating an efficient broadcast sequence using reflected Gray codes. IEEE Transaction on Parallel and Distributed Systems, vol. 8, no. 11, pp. 1117-1122, Nov. 1997. [21] Y. Saad, M. Schultz. Topological properties of hypercubes. IEEE Transaction on Computer Systems, C-37 pp.12-27, 1988. [22] S. Q. Zheng. and S. Latifi. Optimal simulation of linear multiprocessor architectures on multiply-twisted cube using generalized Gray codes. IEEE Transaction on Parallel and Distributed Systems, vol. 7, no. 6, pp. 612-619, 1996. [23] A. Y. Zomaya. Parallel and Distributed Computing Handbook. McGraw-Hill, Inc. 1996.
|