跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃惠美
研究生(外文):Huang, Huei-Mei
論文名稱:細胞激素受體傳遞抗細胞凋亡活性之訊息傳遞途徑
論文名稱(外文):Signal Transduction Pathways Involved in Cytokine Receptor-Mediated Anti-Apoptosis Activity
指導教授:嚴仲陽
指導教授(外文):Jeffrey Jong-Young Yen
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:131
中文關鍵詞:抗細胞凋亡訊息傳遞幹細胞因子細胞激素-5
外文關鍵詞:Anti-apoptosisSignal transductionStem cell factorInterleukin-5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血球細胞形成之過程是非常複雜, 由一小群幹細胞製造成較大群的成熟細胞, 這些成熟細胞主要分為八個系譜o 幹細胞於培養基中需要多種細胞激素才能生長, 但是由幹細胞分化成的系譜委任母細胞其生長僅需要單一細胞激素o 幹細胞的生長對於細胞激素需要的不同與細胞激素受體表現量有關, 然而細胞激素調控這些細胞分化與生長的機制並不是很清楚o 在這個實驗, 我們發現顆粒性白血球及巨噬細胞聚落叢集刺激素 (granulocyte-macrophage colony stimulating factor, GM-CSF) 不論有無幹細胞因子 (stem cell factor, SCF) 存在皆可以適當的活化血癌細胞TF-1的生長, 然而IL-5需要和SCF一同刺激才可以使細胞生長良好o 如此的協助作用效果部分是因為SCF的抗細胞凋亡之活性o 於細胞大量表現IL-5受體a次單位也可以使抗細胞凋亡活性增強而使細胞生長良好o 表現外來的抗細胞凋亡蛋白, Bcl-2, 也可使細胞成為依賴IL-5生長的現象o 這些結果建議只有當細胞的IL-5受體表現量低, 而IL-5訊息傳遞缺乏抗細胞凋亡時才需要SCF的協助作用o 為了了解IL-5和SCF的抗細胞凋亡傳遞因子, 首先我們分析Bcl-2家族成員包括Bcl-2, Mcl-1和Bax的表達與TF-1和JYTF-1細胞是否凋亡的關係o SCF對於這兩種細胞可以有效誘導Mcl-1的表現, 然而IL-5對Mcl-1在這兩種細胞中有不同的誘導表現量, 且與其抗細胞凋亡之活性有所關聯o IL-5對於TF-1細胞的抗細胞凋亡的缺陷與JAK1缺乏酪氨酸的磷酸化及顯著降低JAK2, STAT5, MAPK和PKB/Akt的磷酸化有關, 但是SCF的協助作用可以活化MAPK和PKB/Akt的磷酸化, 而卻不會活化STAT5的磷酸化o 將JYTF-1細胞處理MEK抑制劑和PI-3K抑制劑, 即可分別去除MAPK和PKB/Akt的活性, 並且降低Mcl-1的表現和細胞生長的活性o 因此這些結果建議Mcl-1是SCF與IL-5抗細胞凋亡活性的共同標的, 並且皆經由MAPK和PKB/Akt的傳遞途徑調控Mcl-1表現和預防細胞凋亡o 前面實驗建議, JAK1和JAK2於細胞激素之訊息傳遞扮演一個重要的角色, 且對於GM-CSF/IL-3/IL-5所依賴的存活效果, JAK1和JAK2同時活化可能是必需的o 為了了解JAK1和JAK2調控特定訊息傳遞途徑扮演的角色, 我們建立一個有條件的JAK活化系統o 我們構築可以製造結合體的質體, 此結合體含有CD16膜外範圍, CD7膜間區域和JAK做為質內範圍o 這些質體被送入Ba/F3細胞株並且分離出已穩定表現結合體蛋白之細胞株o 這些細胞株包含表現JAK1 (CDJAK1)或JAK2 (CDJAK2) 以及同時表現JAK1和JAK2 (CDJAK1+2)o 我們成功地利用抗CD16抗體做抗體交叉聯集, 可以使結合體蛋白聚集並誘導此蛋白自動磷酸化和STAT5酪氨酸磷酸化o 我們將繼續分析這些受活化的結合體蛋白對生命性質特別是對於依賴細胞激素之細胞的生存活性的影響o
Hematopoiesis is a complex process in which a small population of stem cells is needed to generate continuously large populations of mature cells in eight major lineages. In vitro proliferation of hematopoietic stem cells requires costimulation by multiple cytokines whereas expansion of lineage-committed progenitor cells generated by stem cells usually requires only a single factor. The distinct requirement of factors for proliferation coincides with the differential temporal expression of the subunits of cytokine receptors during early stem cell differentiation. However, the underlying molecular mechanism of the hierarchical response of the cells to cytokine during the differentiation and prliferation program is not yet clear. In this study, we found that GM-CSF optimally activated proliferation of TF-1 cells regardless of the presence or absence of SCF. However, IL-5 alone sustained survival of TF-1 cells and required costimulation of SCF for optimal proliferation. The synergistic effect of SCF was partly due to its anti-apoptosis activity. Over-expression of the IL5Ra in TF-1 cells also resumed optimal proliferation due to correction of the defect in apoptosis suppression. Exogenous expression of an oncogenic anti-apoptosis protein, Bcl-2, conferred on TF-1 cells an IL-5-dependent phenotype. These data suggest SCF costimulation is only necessary when the expression level of IL5Ra is low and apoptosis suppression is defective in the signal transduction of IL-5. To understand the signaling components of IL-5 and SCF involved in anti-apoptosis, we first detected some Bcl-2 family members, including Bcl-2, Mcl-1 and Bax, in response to cytokine stimulation in TF-1 and JYTF-1 cells whose optimal growth requires or does not require SCF costimulation, respectively. The Mcl-1 was highly inducible by SCF in both cell lines, however was differentially induced by IL-5 and closely correlated with the ability of IL-5 to suppress apoptosis. The defect of IL-5 in apoptosis suppression was also associated with lack of induction of tyrosine phosphorylation of JAK1 and markedly reduction of phosphorylation of JAK2, STAT5, MAPK and PKB/Akt, while SCF costimulation activated the phosphorylation of MAPK and PKB/Akt, but not STAT5 in TF-1 cells. Treatment of JYTF-1 cells with the MEK inhibitor and the PI-3K inhibitor rendered a loss of the downstream MAPK and PKB/Akt activities, respectively, and resulted in the reduction of Mcl-1 expression and loss of cell viability. Therefore, our data suggested that Mcl-1 is a common target of both IL-5 and SCF for their apoptosis prevention activity and that both MAPK and PKB/Akt signaling pathways are crucial in regulation of Mcl-1 expression and apoptosis prevention. In our study, JAK1 and JAK2 was suggested to play a central role in transducing signals of cytokines and the simultaneous activation of both JAK1 and JAK2 may be essential for optimizing the GM-CSF/IL-3/IL-5-dependent survival effect. To explore the role of JAK1 and JAK2 in the regulation of specific signal transduction pathways, we established a conditional activation system for JAK activation. We constructed plasmids encoding fusion proteins with a CD16 external domain, a CD7 transmembrane region, and JAK1 (CD16/7/JAK1) or JAK2 (CD16/7/JAK2) as a cytoplasmic domain. These plasmids were transfected into Ba/F3 cell line and then stable expressing subclones were isolated. We established cell lines not only expressing JAK1 (CDJAK1) or JAK2 (CDJAK2) alone, but also expressing JAK1 and JAK2 together (CDJAK1+2). Clustering of these chimeric proteins by antibody cross-linking with anti-CD16 antibody induced autophosphorylation of the chimeric kinase proteins and tyrosine phosphorylation of STAT5. We will continue to analyze the biological outcomes resulting from activating these chimeric kinase proteins, especially on the survival effect in cytokine-dependent cells.
COVER
Contents
Figure
Appendix
Summary
中文摘要
Chapter I:General introduction
References
Chapter II:Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2
Abstract
Introduction
Materials and Mehtod
Results
Discrssion
Figrue Legends
References
Chapter III:mcl-1 is a common target of intrleukin 5 and stem cell factor for the apoptosis prevention in hematopoietic progenitor cells
Abstract
Introduction
Materials and Mehtod
Results
Discrssion
Figrue Legends
References
Chapter IV:Conditional Activation of Janus Kinase (JAK) and Functional Characterization in Interleukin-3-Dependent Cells
Abstract
Introduction
Materials and Mehtod
Results
Discrssion
Figrue Legends
References
Chapter I
1. Hoffbrand, A.V., Pettit, J.E. Essential haematology, 3rd edition. Chapter 1: Blood cell formation. Oxford Blackwell Scientific Publication, London. 1993.
2. Abbas, A.K., Lichtman, A.H., and Pober, J.S. Cellular and molecular immunology. Chapter 11: Cytokine. W.B. Saunders Company, Philadelphia. 1991.
3. Hamblin, A.S. Cytokines and cytokine receptors, 2nd edition. Oxford University Press.
4. Metcalf, D. Control of granulocytes and macrophages: Molecular, Cellular, and clinical aspects. Science 254:529-533, 1991.
5. Sanderson, C.J. Interleukin-5, eosinophils and disease. Blood 79:3101-3109, 1992.
6. Bazan, F. Structural taxonomy of helical cytokines and their receptors. Adv. Immuno. 1993.
7. Lopez, A.F., Elliott, M.J., Woodcock, J., Vadas, M.A. GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol. Today 13:495-500, 1992.
8. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
9. Heldin, C.H. Dimerization of cell surface receptors in signal transduction. Cell 27:213-223, 1995.
10. Murakami, M., Narazaki, M., Hibi, M., Yawata, H., Yasukawa, K., Hamaguchi, M., Taga, T., Kishimoto, T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. U. S. A. 88: 11349-11353, 1991.
11. Fukunaga, R., Ishizaka-Ikeda, E., Pan, C.X., Seto, Y., Nagata, S. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J. 10:2855-2865, 1991.
12. Miyajima, A., Mui, A.L., Ogorochi, T., Sakamaki, K. Receptor for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 82:1960-1974, 1993.
13. Itoh, N., Yonehara, S., Schreurs, J., Gorman, D.M., Maruyama, K., Ishii, A., Yahara, I., Arai, K., Miyajima, A. Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 247:324-327, 1990.
14. Hara, T., Miyajima, A. Two distinct functional high affinity receptors for mouse interleukin-3 (IL-3). EMBO J. 11:1875-1884, 1992.
15. Zsebo, K.M., Williams, D.A., Geissler, E.N., Broudy, V.C., Martin, F.H., Atkins, H.L., Hsu, R.Y., Birkett, N.C., Okino, K.H., Murdock, D.C., Jacobsen, F.W., Langley, K.E., Smith, K.A., Takeishi, T., Cattanach, B.M., Galli, S.J., Sugg, S.V. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213-224, 1990.
16. Huang, E., Nocka, K., Beier, D.R., Chu, T.Y., Buck, J., Lahm, H.W., Wellner, D., Leder, P., Besmer, P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63:225-233, 1990.
17. Linenberger, M.L., Jacobson, F.W., Bennett, L.G., Broudy, V.C., Martin, F.H., Abkowitz, J.L. Stem cell factor production by human marrow stromal fibroblasts. Exp. Hematol. 23: 1104-1114, 1995.
18. Broudy, V.C., Kovach, N.L., Bennett, L.G., Lin, N., Jacobsen-FW; Kidd-PG Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood 83:2145-2152, 1994.
19. Qiu, F.H., Ray, P., Brown, K., Barker, P.E., Jhanwar, S., Ruddle, F.H., Besmer, P. Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family--oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J. 7:1003-1011, 1988.
20. Heldin, C.H. Dimerization of cell surface receptors in signal transduction. Cell 80: 213-223, 1995.
21. Yoshinaga, K., Nishikawa, S., Ogawa, M., Hayashi, S., Kunisada, T., Fujimoto, T., Nishikawa, S. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113: 689-699, 1991.
22. Manova, K., Bachvarova, R.F., Huang, E.J., Sanchez, S., Pronovost, S.M., Velazquez, E., McGuire, B., Besmer, P. c-kit receptor and ligand expression in postnatal development of the mouse cerebellum suggests a function for c-kit in inhibitory interneurons. J. Neurosci. 12: 4663-4676, 1992.
23. Broudy, V.C. Stem cell factor and hematopoiesis. Blood 15: 1345-1364, 1997.
24. McNiece, I.K., Briddell, R.A. Stem cell factor. J. Leukoc. Biol. 58: 14-22, 1995.
25. Wu, H., Klingmuller, U., Besmer, P., Lodish, H.F. Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377: 242-246, 1995.
26. Hassan, H.T., Zander, A. Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta. Haematol. 95: 257-262, 1996.
27. Yee, N.S., Paek, I., Besmer, P. Role of kit-ligand in proliferation and suppression of apoptosis in mast cells: basis for radiosensitivity of white spotting and steel mutant mice. J. Exp. Med. 197:1777-1787, 1994.
28. Raff, M.C. Social controls on cell survival and cell death. Nature 356: 397-400, 1992.
29. Wyllie, A.H., Kerr, J.F., Currie, A.R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251-306, 1980.
30. Steller, H. Mechanisms and genes of cellular suicide. Science 10: 1445-1449, 1995.
31. Hengartner, M.O., Horvitz, H.R. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4:581-586, 1994.
32. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., Croce, C.M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229:1390-1393, 1985.
33. Zamzami, N., Brenner, C., Marzo, I., Susin, S.A., Kroemer, G. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16: 2265-2282, 1998.
34. Green, D.R., Reed, J.C. Mitochondria and apoptosis. Science 281:1309-1312, 1998.
35. Nguyen, M., Branton, P.E., Walton, P.A., Oltvai, Z.N., Korsmeyer, S.J. Shore-GC Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J. Biol. Chem. 269:16521-16524, 1994.
36. Hsu, Y.T., Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273:10777-10783, 1998.
37. Vaux, D.L., Cory, S., Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440-442, 1988.
38. Korsmeyer, S.J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879-876, 1992.
39. Nunez, G., London, L., Hockenbery, D., Alexander, M., McKearn, J.P., Korsmeyer, S.J. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 144:3602-3610, 1990.
40. Deng, G., Podack, E.R. Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc. Natl. Acad. Sci. U. S. A. 90:2189-2193, 1993.
41. Schwarze, M.M., Hawley, R.G. Prevention of myeloma cell apoptosis by ectopic bcl-2 expression or interleukin 6-mediated up-regulation of bcl-xL. Cancer. Res. 55:2262-2265, 1995.
42. Chao, D.T., Korsmeyer, S.J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16:395-419, 1998.
43. Adams, J.M., and Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322-1326, 1998.
44. Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609-619, 1993.
45. Peter, M.E., Heufelder, A.E., Hengartner, M.O. Advances in apoptosis research. Proc. Natl. Acad. Sci. U. S. A. 94:12736-12737, 1997.
46. Thornberry, N.A., Lazebnik, Y. Caspases: enemies within. Science 281: 1312-1316, 1998.
47. Conradt, B., Horvitz, H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 15:519-529, 1998.
48. Darnell, J.E. Jr., Kerr, I.M., Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415-1421, 1994.
49. Watowich, S.S., Wu, H., Socolovsky, M., Klingmuller, U., Constantinescu, S.N., Lodish, H.F. Cytokine receptor signal transduction and the control of hematopoietic cell development. Ann. Rev. Cell. Dev. Biol. 12:91-128, 1996.
50. Shuai, K., Horvath, C.M., Huang, L.H., Qureshi, S.A., Cowburn, D., Darnell, J.E. Jr. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821-828, 1994.
51. Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T., Yoneda, Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 16:7067-7077, 1997.
52. Briscoe, J., Kohlhuber, F., Muller, M. JAKs and STATs branch out. Trends Cell Biol. 6:336-340, 1996.
53. Schindler, C., Darnell, J.E. Jr., Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64:621-651, 1995.
54. Shuai, K., Stark, G.R., Kerr, I.M., Darnell, J.E. Polypeptide signaling to the nucieus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366:580-583, 1993.
55. Silvennoinen, O., Ihle, J.N., Schlessinger, J., Levy, D.E. Interferon induced nuclear signalling by Jak protein tyrosine kinases. Nature 366:583-585, 1993.
56. Lee, C.K., Bluyssen, H.A.R., Levy, D.E. Regulation of interferon-a responsiveness by the duration of Janus kinase activity. J. Biol. Chem. 272:21872-21877, 1997.
57. Gaffen, S.L., Lai, S.Y., Xu, W., Gouilleux, F., Groner, B., Goldsmith, M.A., Greene, W.C. Signaling through the IL-2R ~ chain activates a STAT-5-like DNA binding activity. Proc. Natl. Acad. Sci. U. S. A. 92:7192-7196, 1995.
58. Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L.C., Yi, T. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell Biol. 16:6985-6992, 1996.
59. Yin, T., Shen, R., Geng, G.S., Yang, Y.C. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinase. J. Biol. Chem. 272:1032-1037, 1997.
60. Starr, R., Willson, T.A., Viney, E.M., Murray, L.J., Rayner, J.R., Jenkins, B.J., Gonda, T.J., Alexander, W.S., Metcalf, D., Nicola, N.A., Hilton, D.J. A family of cytokine-inducible inhibitors of signalling. Nature 387:917-921, 1997.
61. Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K. et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924-928, 1997.
62. Endo, T.A., Masabura, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K., Matsumoto, A., Tanimura, S., Ohtsubo, M., Misawa, H. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387:921-924, 1997.
63. Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., Hara, T., Miyajima, A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 2 and erythropoietin receptors. EMBO J. 14:2816-2826, 1995.
64. Chung, C.D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., Shuai, K. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803-1805, 1997.
1. Zhao, Y., Wagner, F., Frank, S., and Kraft, A. S. 1995. The Amino-terminal Portion of the JAK2 Protein Kinase Is Necessary For Binding and Phosphorylation of the Granulocyte-Macrophage Colony-Stimulating Factor Receptor βc Chain. J. Biol. Chem. 270, 13814-13818.
66. Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., Ishikawa, T., and Takatsu, K. JAK2 and JAK1 Constitutively Associate With an Interleukin (IL-5) Receptor a and bc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood 91:2264-2271, 1998.
67. Barahmand, P.F., Meinke, A., Groner, B., Decker, T. Jak2-Stat5 interactions analyzed in yeast. J. Biol. Chem. 273:12567-12575, 1998.
68. He, T.C., Jiang, N., Zhuang, H., Wojchowski, D.M. Erythropoietin-induced recruitment of Shc via a receptor phosphotyrosine-independent, Jak2-associated pathway. J. Biol. Chem. 270:11055-11061, 1995.
69. Sakai, I., Nabell, L., Kraft, A.S. Signal transduction by a CD16/CD7/Jak2 fusion protein. J. Biol. Chem. 270:18420-18427, 1995.
70. Rodig, S.J., Meraz, M.A., White, J.M., Lampe, P.A., Riley, J.K., Arthur, C.D., King, K.L., Sheehan, K.C., Yin, L., Pennica, D., Johnson, E.M. Jr., Schreiber, R.D. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373-383, 1998.
71. Parganas, E., Wang, D., Stravopodis, D., Topham, D.J., Marine, J.C., Teglund, S., Vanin, E.F., Bodner, S., Colamonici, O.R., van-Deursen, J.M., Grosveld, G., Ihle, J.N. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385-395, 1998.
72. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397-409, 1998.
73. Teglund, S., McKay, C., Schuetz, E., van-Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G., Ihle, J.N. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841-850, 1998.
74. Blenis, J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. U. S. A. 90:5889-5892, 1993.
75. Johnson, G.L., Vaillancourt, R.R. Sequential protein kinase reactions controlling cell growth and differentiation. Curr. Opin. Cell. Biol. 6:230-238, 1994.
76. Fanger, G.R., Gerwins, P., Widmann, C., Jarpe, M.B., Johnson, G.L. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7:67-74, 1997.
77. Cobb, M.H., Goldsmith, E.J. How MAP kinases are regulated. J. Biol. Chem. 270:14843-14846, 1995.
78. Hemmings, B.A. Akt signaling: linking membrane events to life and death decisions. Science 275:628-630, 1997.
79. Alessi-DR; Andjelkovic-M; Caudwell-B; Cron-P; Morrice-N; Cohen-P; Hemmings-BA Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO-J. 1996 Dec 2; 15(23): 6541-51AU:
80. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7:261-269, 1997.
81. Franke, T.F., Kaplan, D.R., Cantley, L.C. PI3K: downstream AKTion blocks apoptosis. Cell 88:435-437, 1997.
82. Vanhaesebroeck, B., Leevers, S.J. Panayotou, G., Waterfield, M.D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22:267-272, 1997.
83. Toker, A., Cantley, L.C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673-676, 1997.
84. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785-789, 1995.
85. del-Peso, L., Gonzalez, G.M., Page, C., Herrera, R., Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687-689, 1997.
86. Zha, J., Harada, H., Yang, E., Jockel, J., Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X (L). Cell 87:619-628, 1996.
87. Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G. S., Franke, T.F., Stanbridge, E., Frisch, S., Reed, J.C. Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318-1321, 1998.
88. Ihle, J.N. Cytokine receptor signalling. Nature 377:591-594, 1995.
89. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
90. Metcalf, D., Nicola, N.A., Robb, L. Differentiation commitment in normal hemopoiesis and leukemic transformation. J. Cell Physiol. 173:131-134, 1997.
91. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y.F., Miyazono, K., Urabe, A., Takaku, F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell Physiol. 140:323-334, 1989.
92. Chao, J.R., Chen, C.S., Wang, T.F., Tseng, L.H., Tsai, J.J., Kuo, M.L., Yen, J.J., Yang-Yen, H.F. Characterization of factor-independent variants derived from TF-1 hematopoietic progenitor cells: the role of the Raf/MAP kinase pathway in the anti-apoptotic effect of GM-CSF. Oncogene 14:721-728, 1997.
93. Huang, H.M., Lee, J.C., Hsieh, Y.C., Yang-Yen, H.F., Yen, J.J.Y. Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2. Blood, in press.1999.
94. Yen, J.J.Y., Hsieh, Y.C., Yen, C.L., Chang, C.C., Lin, S., Yang-Yen, H.F. Restoring the apoptosis suppression response to IL-5 confers on erythroleukemic cells a phenotype of IL-5-dependent growth. J. Immunol. 154:2144-2152, 1995.
Chapter II
1. McNiece, I.K., Stewart, F.M., Deacon, D.M., Quesenberry, P.J. Synergistic interactions between hematopoietic growth factors as detected by in vitro mouse bone marrow colony formation. Exp. Hematol. 16:383-388, 1988.
2. McNiece, I.K., Langley, K.E., Zsebo, K.M. Recombinant human stem cell factor (rhSCF) synergises with GM-CSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of myeloid and erythroid lineages. Exp. Hematol. 19:226-231, 1991.
3. Metcalf, D., Nicola, N.A. Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro. Effects of combination with colony-stimulating factors. Proc. Natl. Acad. Sci. U. S. A. 88:6239-6243, 1991.
4. Metcalf, D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: Influence of colony stimulating factors. Proc. Natl. Acad. Sci. U. S. A. 88:11310-11314, 1991.
5. Metcalf, D. The cellular basis for enhancement interactions between stem cell factor and the colony stimulating factors. Stem Cells Dayt. 11 Suppl 2:1-11, 1993.
6. Ihle, J.N. Cytokine receptor signalling. Nature 377:591-594, 1995.
7. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
8. Ashihara, E., Vannucchi, A.M., Migliaccio, G., Migliaccio, A.R. Growth factor receptor expression during in vitro differentiation of partially purified populations containing murine stem cells. J. Cell Physiol. 171:343-356, 1997.
9. McKinstry, W.J., Li, C.L., Rasko, J.J., Nicola, N.A., Johnsont, G.R., Metcalf, D. Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89:65-71, 1997.
10. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y.E., Miyazono, K., Urabe, A., Takaku, F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell Physiol. 140:323-334, 1989.
11. Caceres-Cortes, J., Rajotte, D., Dumouchel, J., Haddad, P., Hoang, T. Product of the steel locus suppresses apoptosis in hematopoietic cells. Comparison with pathways activated by granulocyte macrophage colony-stimulating factor. J. Biol. Chem. 269:12084-12091, 1994.
12. Yen, J.J.Y., Hsieh, Y.C., Yen, C.L., Chang, C.C., Lin, S., Yang-Yen, H.F. Restoring the apoptosis suppression response to IL-5 confers on erythroleukemic cells a phenotype of IL-5-dependent growth. J. Immunol. 154:2144-2152, 1995.
13. Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kou, M.L., Yen, J.J.Y., Yang-Yen, H.F. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol. Cell Biol. 18:4883-4898, 1998.
14. Morgensten, J.P., Land, H. Advanced mammalian gene transfer: High titer retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acid Res. 18:3587-3596, 1990.
15. Wilkinson, M. RNA isolation: a mini-prep method. Nucleic Acid Res. 16:10934, 1988.
16. Jiang, M.C., Yang-Yen, H.F., Lin, J.K., Yen, J.J.Y. Differential regulation of p53, c-myc, bcl-2 and bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 13:609-616, 1996.
17. Liu, L., Cutler, R.L., Mui, A.L.F., Krystal, G. Steel factor stimulates the serine/threonine phosphorylation of the interleukin 3 receptor. J. Biol. Chem. 269:16774-16779, 1994.
18. Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C., Croce, C.M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097-1099, 1984.
19. Cleary, M.L., Smith, S.D., Sklar, J. Cloning and structural analysis of cDNA for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14:18) translocation. Cell 47:19-28, 1986.
20. Garcia, I., Martinou, I., Tsujimoto, Y., Martinou, J.C. Prevention of programmed cell death of sympathetid neurons by the bcl-2 proto-oncogene. Science 258: 302-304, 1992.
21. Bissonnette, R.P., Echeverri, F., Mahboubi, A., Green, D.R. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552-554, 1992.
22. Allsopp, T.E., Wyatt, S., Paterson, H.F., Davies, A.M. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73:295-307, 1993.
23. Chretien, S., Moreau-Gachelin, F., Apiou, F., Courtois, G., Mayeux, P., Dutrillaux, B., Cartron, J.P., Gisselbrecht, S., Lacombe, C. Putative oncogenic role of the erythropoietin receptor in murine and human erythroleukemia cells. Blood 83:1813-21, 1994.
24. Metcalf, D., Nicola, N.A., Robb, L. Differentiation commitment in normal hemopoiesis and leukemic transformation. J. Cell Physiol. 173:131-134, 1997.
25. Cynshi, O., Satoh, K., Shimonaka, Y., Hattori, K., Nomura, H., Imai, N., Hirashima, K. Reduced response to granulocyte colony-stimulating factor in W/Wv and Sl/Sld mice. Leukemia 5:75-77, 1991.
26. McDonnell, T.J., Deane, N., Platt, F.M., Nunez, G., Jaeger, U., McKearn, J.P., Korsmeyer, S.J. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57:79-88, 1989.
27. Katsumata, M., Siegel, R.M., Louie, D.C., Miyashita, T., Tsujimoto, Y., Nowell, P.C., Greene, M.I., Reed, J.C. Differential effects of Bcl-2 on T and B cells in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 89:11376-11380, 1992.
28. Strasser, A., Elefanty, A.G., Harris, A.W., Cory, S. Progenitor tumors from Em-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. EMBO J. 15:3823-3834, 1996.
29. Harnois, D.M., Que, F.G., Celli, A., LaRusso, N.F., Gores, G.J. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatol. 26:884-890, 1997.
30. Saegusa, M., Okayasu, I. Down-regulation of bcl-2 expression is closely related to squamous differentiation and progesterone therapy in endometrial carcinomas. J. Pathol. 182:429-436, 1997.
31. Karakas, T., Maurer, U., Weidmann, E., Miething, C.C., Hoelzer, D., Bergmann, L. High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann. Oncol. 9:159-165, 1998.
32. Hasegawa, T., Matsuno, Y., Shimoda, T., Hirohashi, S., Hirose, T., Sano, T. Frequent expression of bcl-2 protein in solitary fibrous tumors. Jpn. J. Clin. Oncol. 28:86-91, 1998.
33. Wang, D.G., Liu, W.H., Johnston, C.F., Sloan, J.M., Buchanan, K.D. Bcl-2 and c-Myc, but not bax and p53, are expressed during human medullary thyroid tumorigenesis. Am. J. Pathol. 152:1407-1413, 1998.
34. Bradbury, D.A., Zhu, Y.M., Russell, N.H. Bcl-2 expression in acute myeloblastic leukaemia: relationship with automous growth and CD34 antigen expression. Leuk. Lymph. 24:221-228, 1997.
35. 李建全. 老鼠A1基因之選殖及其定性分析o 中國文化大學生物科技研究所碩士論文o 1996.
Chapter III
1. Sanderson, C.J., O''Garra, A., Warren, D.J., Klaus, G.G.B., Eosinophil differentiation factor also has B-cell growth factor activity: Proposed name interleukin 4. Proc. Natl. Acad. Sci. U. S. A. 83:437-440, 1986.
2. Swain, S.L., McKenzie, D.T., Dutton, R.W., Tonkonogy, S.L., English, M., The role of IL4 and IL5: Characterization of a distinct helper T cell subset that makes IL4 and IL5 (TH2) and requires priming before induction of lymphokine secretion. Immunol. Rev. 102:77-105, 1988.
3. Takatsu, K., Tominaga, A., Harada, N., Mita, S., Matsumoto, M., Takashi, T., Kikuchi, Y., Yamaguchi, N., T-cell replacing factor (TRF)/interleukin-5 (IL-5): Molecular and functional properties. Immunol. Rev. 102:107-135, 1988.
4. Huang, H.M., Lee, J.C., Hsieh, Y.C., Yang-Yen, H.F., Yen, J.J.Y. Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2. Blood, in press.1999.
5. Devos, R., Plaetinck, G., Van der Heyden, J., Cornelis, S., Vandekerckhove, J., Fiers, w., Tavernier, J. Molecular basis of a high affinity murine interleukin-5 receptor. EMBO J. 10:2133-2137, 1991.
6. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., Plaetinck, G. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific a chain and a b chain shared with the receptor for GM-CSF. Cell, 66:1175-1184, 1991.
7. Sakamaki, K., Miyajima, I., Kitamura, T., Miyajima, A. Critical cytoplasmic domains of the common b subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11:3541-3549, 1992.
8. Sato, N., Sakamaki, K., Terada, N., Arai, K., Miyajima, A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cyatoplasmic regions of the common b subunit responsible for different signaling. EMBO J. 12:4181-4189, 1993.
9. Sato, S., Katagiri, T., Takaki, S., Kikuchi, Y., Hitoshi, Y., Yonehara, S., Tsukada, S., Kitamura, D., Watanabe, T., Witte, O., Takatsu, K. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton''s tyrosine and Janus 2 kinases. J. Exp. Med. 180:2101-2111, 1994.
10. Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., Ishikawa, T., Takatsu, K. JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor a and bc subunit, respectively, and are activated upon IL-5 stimulation. Blood, 91:2264-2271, 1998.
11. Besmer, P. Kit-ligand -stem cell factor. In Garland, J. and Quesenberry, P. (eds), Colony Stimulating Factors. Marcel Dekker, New York, N.Y., pp. 369-403, 1997.
12. Reith, A.D., Ellis, C., Lyman, S.D., Anderson, D.M., Williams, D.E., Bernstein, A., Pawson, T. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J., 10:2451-2459, 1991.
13. Rottapel, R., Reedijk, M., Williams, D.E., Lyman, S.D., Anderson, D.M., Pawson, T., Bernstein, A. The Steel/W trasnduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol. Cell. Biol. 11:3043-3051, 1991.
14. Blume-Jensen, P., Ronnstrand, L., Gout, I., Waterfield, M.D., Heldin, C.H. Modulation of Kit/stem cell factor receptor-induced signaling by protein kinase C. J. Biol. Chem. 269:21793-21802, 1994.
15. Yi, T. and Ihle, J.N. Association of hematopoietic cell phoshophatase with c-Kit after stimulation with c-Kit ligand. Mol. Cell. Biol. 13:3350-3358, 1993.
16. Cutler, R.L., Liu, L., Damen, J.E., Krystal, G. Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cells. J. Biol. Chem. 268:21463-21465, 1993.
17. Duronio, V., Welham, M.J., Abraham, S., Dryden, P., Schrader, J.W. p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPase-activating protein. Proc. Natl. Acad. Sci. U. S. A. 889:1587-1591, 1992.
18. Alai, M., Mui, A.L., Cutler, R.L., Bustelo, X.R., Barbacid, M. Krystal, G. Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells. J. Biol.Chem. 267:18021-18025, 1992.
19. Kouro, T., Kikuchi, Y., Kanazawa, H., Hirokawa, K., Harada, N., Shiiba, M., Wakao, H., Takaki, S., Takatsu, K. Critical proline residues of the cytoplasmic domain of the IL-5 receptor a chain and its function in IL-5-mediated activation of JAK kinase and STAT5. Intl. Immunol. 8: 237-245, 1996.
20.Mui, A.L., Wakao, H., O''Farrell, A.M., Harada, N., Miyajima, A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 14: 1166-1175, 1995.
21.Takaki, S., Kanazawa, H., Shiiba, M, Takatsu, K. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor a chain and its function in IL-5-mediated growth signal transduction. Mol. Cell Biol. 14: 7404-7413, 1994.
22.He, T.C., Jiang, N., Zhuang, H., Quelle, D.E., Wojchowski, D.M. The extended box 2 subdomain of erythropoietin receptor is nonessential for Jak2 activation yet critical for efficient mitogenesis in FDC-ER cells. J. Biol. Chem. 269: 18291-18294, 1994.
23.Tanner, J.W., Chen, W., Young, R.L., Longmore, G.D., Shaw, A.S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem. 270: 6523-6530, 1995.
24. Kinoshita, T., Yokota, T., Arai, K. Miyajima, A. Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J. 14: 266-275, 1995.
25. Dudley, D.T., Pang, L., Decker, S.J., Bridges, A. J., Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U. S. A. 92:7686-7689, 1995.
26. Suzuki, J., Kaziro, Y., Koide, H. An activated mutant of R-Ras inhibits cell death caused by cytokine deprivation in BaF3 cells in the presence of IGF-I. Oncogene 15:1689-1697, 1997.
27. Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kuo, M.L., Yen, J.J.Y., Yang-Yen, H.F. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol. Cell. Biol. 18:4883-4898, 1998.
28. Carson, W.E., Haldar, S., Baiocchi, R.A., Croce, C.M., Caligiuri, M.A. The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl-2. Proc. Natl. Acad. Sci. U.S.A. 91:7553-7557, 1994.
29. Yee, N.S., Paek, I., Besmer, P. Role of kit-ligand in proliferation and suppression of apoptosis in mast cells: basis for radiosensitivity of White spotting and Steel mutant mice. J. Exp. Med. 179:1777-1787, 1994.
30. Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S., Miyajima, A. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21ras in IL-3-dependent hematopoietic cells. Oncogene 15:619-627, 1997.
31. Kinoshita, T., Yokota, T., Arai, K., Miyajima, A. Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells. Oncogene 10:2207-2212, 1995.
32. Sui, X., Krantz, S.B., You, M., Zhou, Z. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92:1142-1149, 1998.
33. Itoh, T., Liu, R., Yokota, T., Arai, K.I., Watanabe, S. Definition of the role of tyrosine residues of the common beta subunit regulating multiple signaling pathways of granulocyte-macrophage colony-stimulating factor receptor. Mol. Cell Biol. 18:742-752, 1998.
34. Zamorano, J., Wang, H.Y., Wang, R., Shi, Y., Longmore, G.D., Keegan, A.D. Regulation of cell growth by IL-2: role of STAT5 in protection from apoptosis but not in cell cycle progression. J. Immunol. 160:3502-3512, 1998.
35. Mui, A.L., Wakao, H., Kinoshita, T., Kitamura, T., Miyajima, A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 15:2425-2433, 1996.
36. Onishi, M., Nosaka, T., Misawa, K., Mui, A.L., Gorman, D., McMahon, M., Miyajima, A., Kitamura, T. Identification and characterization of a constitutively active Stat5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18:3871-3879, 1998.
37. Teglund, S., McKay, C., Schuetz, E., van Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G., Ihle, J.N. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841-850, 1998.
Chapter IV
1. Metcalf, D. The molecular biology and functions of the granulocyte-marcrophage colony-stimulating factors. Blood 67:257-267, 1986.
2. Clark, S. C., and Kamen, R. The human hematopoietic colony-stimulating factors. Science 236:1229-1227, 1987.
3. Sanderson, C. J. Interleukin-5, eosinophils, and disease. Blood 79:3101-3109, 1992.
4. Lopez, A. F., Vadas, M. A., Woodcock, J. M., Milton, S. E., Lewis, A., Elliott, M. J., Gillis, D., Ireland, R., Olwell, E., Park, L. S. Interleukin-5, interleukin-3, and granulocyte-macrophage colony-stimulating factor cross-compete for binding to cell surface receptors on human eosinophils. J. Biol. Chem. 266: 24741-24747, 1991.
5. Kitamura, T., Sato, N., Arai, K., and Miyajima, A. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165-1174, 1991.
6. Kishimoto, T., Taga, T., and Akira, S. Cytokine signal transduction. Cell 76: 253-262, 1994.
7. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
8. Ihle, J. N. Cytokine receptor signalling. Nature 377:591-594, 1995.
9. Schindler, C., and Darnell, J. E., Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64:621-651, 1995.
10. Darnell, J. E., Jr. STATs and gene regulation. Science 277:1630-1635, 1997.
11. Kouro, T., Kikuchi, Y., Kanazawa, H., Hirokawa, K., Harada, N., Shiiba, M., Wakao, H., Takaki, S., Takatsu, K. Critical proline residues of the cytoplasmic domain of the IL-5 receptor α chain and its function in IL-5-mediated activation of the JAK kinases and STAT5. Int. Immunol. 8:237-245, 1996.
12. Callus, B. A., and Mathey-Prevot. B. Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 91:3182-3192, 1998.
13. Silvennoinen, O., Witthuhn, B. A., Ouelle, F. W., Cleveland, J. L., Yi, T., Ihle, J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc. Natl. Acad. Sci. U. S. A. 90:8429-8433, 1993.
14. Mui, A. L., Wakao, H., O,Farrel, A., Harada, N., Miyajima, A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 14:1166-1175, 1995.
15. van der Bruggen, T., Caldenhoven, E., Kanters, D., Coffer, P., Raaijmakers J. A. M., Lammers, J. J., Koenderman, L. Interleukin-5 signalling in human eosinophils involves JAK2 tyrosine kinase and STAT1α. Blood 85:1442-1448, 1995.
16. Azam, M., Erdjument-Bromage, H., Kreider, B. L., Xia, M., Quelle, F., Basu, R., Saris, C., Tempst, P., Ihle J. N., Schindler, S. Interleukin-3 signals through multiple isoforms of stat5. EMBO J. 14:1402-1411, 1995.
17. Sakamaki, K., Miyajima, I., Kitamura, T., Miyajima, A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11:3541-3549, 1992.
18. Sato, N., Sakamaki, K., Terada, N., Arai, K., Miyajima, A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 12:4181-4189, 1993.
19. Kinoshita, T., Yokota, T., Arai, K., Miyajima, A. Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J. 14:266-275, 1995.
20. Miura, O., Cleveland, J. L., and Ihle, J. N. Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol. Cell Biol. 13:1788-1795, 1993.
21. Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O., and Ihle, J. N. AK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227-236, 1993.
22. DaSilva, L., Howard, O. M., Rui, H., Kirken, R. A., and Farrar, W. L. Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J. Biol. Chem. 269:18267-18270, 1994.
23. Quelle, F. W., Sato, N., Witthuhn, B. A., Inhorn, R. C., Eder, M., Miyajima, A., Griffin, J. D., and Ihle, J. N. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell Biol. 14:4335-4341, 1994.
24. Tanner, J. W., Chen, W., Young, R. L., Longmore, G. D., and Shaw, A. S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol. Chem. 270:6523-6530, 1995.
25. Nakamura, N., Chin, H., Miyasaka, N., and Miura, O. An epidermal growth factor receptor/Jak2 tyrosine kinase domain chimera induces tyrosine phosphorylation of Stat5 and transduces a growth signal in hematopoietic cells. J. Biol. Chem. 271:19483-19488, 1996.
26. Sakai, I., Nabell, L., Kraft, A. S. Signal transduction by a CD16/CD7/Jak2 fusion protein. J. Biol. Chem. 270:18420-18427, 1995.
27. Sakai, I., Kraft, A. S. The kinase domain of Jak2 mediates induction of Bcl-2 and delays cell death in hematopoietic cells. J. Biol. Chem. 272:12350-12358, 1997.
28. Lacronique, V., Boureux, A., Valle, V. D., Poirel, H., Quang, C. T., Mauchauffe M., Berthou, C., Lessard, M., Berger, R., Ghysdael, J., and Bernard, O. A. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278:1309-1312, 1997.
29. Luo, H., Rose, P., Barber, D., Hanratty, W. P., Lee, S., Roberts, T MD''Andrea, A. D., and Dearolf, C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell Biol. 17:1562-1571, 1997.
30. Kolanus, W., Romeo, C., and Seed, B. T Cell Activation by clustered tyrosine kinases. Cell 74:171-183, 1993.
31. Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., Ishikawa, T., and Takatsu, K. JAK2 and JAK1 Constitutively Associate With an Interleukin (IL-5) Receptorα and βc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood 91:2264-2271, 1998.
32. Kouro, T., Kikuchi, Y., Kanazawa, H., Hirokawa, K., Harada, N., Shiiba, M., Wakao, H., Takaki, S., Takatsu, K. Critical proline residues of the cytoplasmic domain of the IL-5 receptor α chain and its function in IL-5-mediated activation of the JAK kinases and STAT5. Int. Immunol. 8:237-245, 1996.
33. Quelle, F.W., Sato, N., Witthuhn, B.A., Inhorn, R.C., Eder, M., Miyajima, A., Griffin, J.D., Ihle, J.N. JAK2 associates with the bc chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell Biol. 14:4335-4341, 1994.
34. Kitamura, T., Hayashida, K., Sakamaki, K., Yokota, T., Arai, K., Miyajima, A. Reconstitution of functional receptors for human granulocyte/macrophage colony-stimulating factor (GM-CSF): evidence that the protein encoded by the AIC2B cDNA is a subunit of the murine GM-CSF receptor. Proc. Natl. Acad. Sci. U. S. A. 88:5082-5086, 1991.
35. Zhao, Y., Wagner, F., Frank, S., and Kraft, A. S. The Amino-terminal Portion of the JAK2 Protein Kinase Is Necessary For Binding and Phosphorylation of the Granulocyte-Macrophage Colony-Stimulating Factor Receptor βc Chain. J. Biol. Chem. 270:13814-13818, 1995.
36. Rodig, S.J., Meraz, M.A., White, J.M., Lampe, P.A., Riley, J.K., Arthur, C.D., King, K.L., Sheehan, K.C., Yin, L., Pennica, D., Johnson, E.M. Jr., Schreiber, R.D. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373-383, 1998.
37. Parganas, E., Wang, D., Stravopodis, D., Topham, D.J., Marine, J.C., Teglund, S., Vanin, E.F., Bodner, S., Colamonici, O.R., van-Deursen, J.M., Grosveld, G., Ihle, J.N. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385-395, 1998.
38. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397-409, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top