Chapter I
1. Hoffbrand, A.V., Pettit, J.E. Essential haematology, 3rd edition. Chapter 1: Blood cell formation. Oxford Blackwell Scientific Publication, London. 1993.
2. Abbas, A.K., Lichtman, A.H., and Pober, J.S. Cellular and molecular immunology. Chapter 11: Cytokine. W.B. Saunders Company, Philadelphia. 1991.
3. Hamblin, A.S. Cytokines and cytokine receptors, 2nd edition. Oxford University Press.
4. Metcalf, D. Control of granulocytes and macrophages: Molecular, Cellular, and clinical aspects. Science 254:529-533, 1991.
5. Sanderson, C.J. Interleukin-5, eosinophils and disease. Blood 79:3101-3109, 1992.
6. Bazan, F. Structural taxonomy of helical cytokines and their receptors. Adv. Immuno. 1993.
7. Lopez, A.F., Elliott, M.J., Woodcock, J., Vadas, M.A. GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol. Today 13:495-500, 1992.
8. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
9. Heldin, C.H. Dimerization of cell surface receptors in signal transduction. Cell 27:213-223, 1995.
10. Murakami, M., Narazaki, M., Hibi, M., Yawata, H., Yasukawa, K., Hamaguchi, M., Taga, T., Kishimoto, T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. U. S. A. 88: 11349-11353, 1991.
11. Fukunaga, R., Ishizaka-Ikeda, E., Pan, C.X., Seto, Y., Nagata, S. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J. 10:2855-2865, 1991.
12. Miyajima, A., Mui, A.L., Ogorochi, T., Sakamaki, K. Receptor for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 82:1960-1974, 1993.
13. Itoh, N., Yonehara, S., Schreurs, J., Gorman, D.M., Maruyama, K., Ishii, A., Yahara, I., Arai, K., Miyajima, A. Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 247:324-327, 1990.
14. Hara, T., Miyajima, A. Two distinct functional high affinity receptors for mouse interleukin-3 (IL-3). EMBO J. 11:1875-1884, 1992.
15. Zsebo, K.M., Williams, D.A., Geissler, E.N., Broudy, V.C., Martin, F.H., Atkins, H.L., Hsu, R.Y., Birkett, N.C., Okino, K.H., Murdock, D.C., Jacobsen, F.W., Langley, K.E., Smith, K.A., Takeishi, T., Cattanach, B.M., Galli, S.J., Sugg, S.V. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213-224, 1990.
16. Huang, E., Nocka, K., Beier, D.R., Chu, T.Y., Buck, J., Lahm, H.W., Wellner, D., Leder, P., Besmer, P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63:225-233, 1990.
17. Linenberger, M.L., Jacobson, F.W., Bennett, L.G., Broudy, V.C., Martin, F.H., Abkowitz, J.L. Stem cell factor production by human marrow stromal fibroblasts. Exp. Hematol. 23: 1104-1114, 1995.
18. Broudy, V.C., Kovach, N.L., Bennett, L.G., Lin, N., Jacobsen-FW; Kidd-PG Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood 83:2145-2152, 1994.
19. Qiu, F.H., Ray, P., Brown, K., Barker, P.E., Jhanwar, S., Ruddle, F.H., Besmer, P. Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family--oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J. 7:1003-1011, 1988.
20. Heldin, C.H. Dimerization of cell surface receptors in signal transduction. Cell 80: 213-223, 1995.
21. Yoshinaga, K., Nishikawa, S., Ogawa, M., Hayashi, S., Kunisada, T., Fujimoto, T., Nishikawa, S. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113: 689-699, 1991.
22. Manova, K., Bachvarova, R.F., Huang, E.J., Sanchez, S., Pronovost, S.M., Velazquez, E., McGuire, B., Besmer, P. c-kit receptor and ligand expression in postnatal development of the mouse cerebellum suggests a function for c-kit in inhibitory interneurons. J. Neurosci. 12: 4663-4676, 1992.
23. Broudy, V.C. Stem cell factor and hematopoiesis. Blood 15: 1345-1364, 1997.
24. McNiece, I.K., Briddell, R.A. Stem cell factor. J. Leukoc. Biol. 58: 14-22, 1995.
25. Wu, H., Klingmuller, U., Besmer, P., Lodish, H.F. Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377: 242-246, 1995.
26. Hassan, H.T., Zander, A. Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta. Haematol. 95: 257-262, 1996.
27. Yee, N.S., Paek, I., Besmer, P. Role of kit-ligand in proliferation and suppression of apoptosis in mast cells: basis for radiosensitivity of white spotting and steel mutant mice. J. Exp. Med. 197:1777-1787, 1994.
28. Raff, M.C. Social controls on cell survival and cell death. Nature 356: 397-400, 1992.
29. Wyllie, A.H., Kerr, J.F., Currie, A.R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251-306, 1980.
30. Steller, H. Mechanisms and genes of cellular suicide. Science 10: 1445-1449, 1995.
31. Hengartner, M.O., Horvitz, H.R. Programmed cell death in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 4:581-586, 1994.
32. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., Croce, C.M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229:1390-1393, 1985.
33. Zamzami, N., Brenner, C., Marzo, I., Susin, S.A., Kroemer, G. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16: 2265-2282, 1998.
34. Green, D.R., Reed, J.C. Mitochondria and apoptosis. Science 281:1309-1312, 1998.
35. Nguyen, M., Branton, P.E., Walton, P.A., Oltvai, Z.N., Korsmeyer, S.J. Shore-GC Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J. Biol. Chem. 269:16521-16524, 1994.
36. Hsu, Y.T., Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273:10777-10783, 1998.
37. Vaux, D.L., Cory, S., Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440-442, 1988.
38. Korsmeyer, S.J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879-876, 1992.
39. Nunez, G., London, L., Hockenbery, D., Alexander, M., McKearn, J.P., Korsmeyer, S.J. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 144:3602-3610, 1990.
40. Deng, G., Podack, E.R. Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc. Natl. Acad. Sci. U. S. A. 90:2189-2193, 1993.
41. Schwarze, M.M., Hawley, R.G. Prevention of myeloma cell apoptosis by ectopic bcl-2 expression or interleukin 6-mediated up-regulation of bcl-xL. Cancer. Res. 55:2262-2265, 1995.
42. Chao, D.T., Korsmeyer, S.J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16:395-419, 1998.
43. Adams, J.M., and Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322-1326, 1998.
44. Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609-619, 1993.
45. Peter, M.E., Heufelder, A.E., Hengartner, M.O. Advances in apoptosis research. Proc. Natl. Acad. Sci. U. S. A. 94:12736-12737, 1997.
46. Thornberry, N.A., Lazebnik, Y. Caspases: enemies within. Science 281: 1312-1316, 1998.
47. Conradt, B., Horvitz, H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 15:519-529, 1998.
48. Darnell, J.E. Jr., Kerr, I.M., Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415-1421, 1994.
49. Watowich, S.S., Wu, H., Socolovsky, M., Klingmuller, U., Constantinescu, S.N., Lodish, H.F. Cytokine receptor signal transduction and the control of hematopoietic cell development. Ann. Rev. Cell. Dev. Biol. 12:91-128, 1996.
50. Shuai, K., Horvath, C.M., Huang, L.H., Qureshi, S.A., Cowburn, D., Darnell, J.E. Jr. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821-828, 1994.
51. Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T., Yoneda, Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 16:7067-7077, 1997.
52. Briscoe, J., Kohlhuber, F., Muller, M. JAKs and STATs branch out. Trends Cell Biol. 6:336-340, 1996.
53. Schindler, C., Darnell, J.E. Jr., Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64:621-651, 1995.
54. Shuai, K., Stark, G.R., Kerr, I.M., Darnell, J.E. Polypeptide signaling to the nucieus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366:580-583, 1993.
55. Silvennoinen, O., Ihle, J.N., Schlessinger, J., Levy, D.E. Interferon induced nuclear signalling by Jak protein tyrosine kinases. Nature 366:583-585, 1993.
56. Lee, C.K., Bluyssen, H.A.R., Levy, D.E. Regulation of interferon-a responsiveness by the duration of Janus kinase activity. J. Biol. Chem. 272:21872-21877, 1997.
57. Gaffen, S.L., Lai, S.Y., Xu, W., Gouilleux, F., Groner, B., Goldsmith, M.A., Greene, W.C. Signaling through the IL-2R ~ chain activates a STAT-5-like DNA binding activity. Proc. Natl. Acad. Sci. U. S. A. 92:7192-7196, 1995.
58. Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L.C., Yi, T. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell Biol. 16:6985-6992, 1996.
59. Yin, T., Shen, R., Geng, G.S., Yang, Y.C. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinase. J. Biol. Chem. 272:1032-1037, 1997.
60. Starr, R., Willson, T.A., Viney, E.M., Murray, L.J., Rayner, J.R., Jenkins, B.J., Gonda, T.J., Alexander, W.S., Metcalf, D., Nicola, N.A., Hilton, D.J. A family of cytokine-inducible inhibitors of signalling. Nature 387:917-921, 1997.
61. Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K. et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924-928, 1997.
62. Endo, T.A., Masabura, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K., Matsumoto, A., Tanimura, S., Ohtsubo, M., Misawa, H. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387:921-924, 1997.
63. Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., Hara, T., Miyajima, A. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 2 and erythropoietin receptors. EMBO J. 14:2816-2826, 1995.
64. Chung, C.D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., Shuai, K. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803-1805, 1997.
1. Zhao, Y., Wagner, F., Frank, S., and Kraft, A. S. 1995. The Amino-terminal Portion of the JAK2 Protein Kinase Is Necessary For Binding and Phosphorylation of the Granulocyte-Macrophage Colony-Stimulating Factor Receptor βc Chain. J. Biol. Chem. 270, 13814-13818.
66. Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., Ishikawa, T., and Takatsu, K. JAK2 and JAK1 Constitutively Associate With an Interleukin (IL-5) Receptor a and bc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood 91:2264-2271, 1998.
67. Barahmand, P.F., Meinke, A., Groner, B., Decker, T. Jak2-Stat5 interactions analyzed in yeast. J. Biol. Chem. 273:12567-12575, 1998.
68. He, T.C., Jiang, N., Zhuang, H., Wojchowski, D.M. Erythropoietin-induced recruitment of Shc via a receptor phosphotyrosine-independent, Jak2-associated pathway. J. Biol. Chem. 270:11055-11061, 1995.
69. Sakai, I., Nabell, L., Kraft, A.S. Signal transduction by a CD16/CD7/Jak2 fusion protein. J. Biol. Chem. 270:18420-18427, 1995.
70. Rodig, S.J., Meraz, M.A., White, J.M., Lampe, P.A., Riley, J.K., Arthur, C.D., King, K.L., Sheehan, K.C., Yin, L., Pennica, D., Johnson, E.M. Jr., Schreiber, R.D. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373-383, 1998.
71. Parganas, E., Wang, D., Stravopodis, D., Topham, D.J., Marine, J.C., Teglund, S., Vanin, E.F., Bodner, S., Colamonici, O.R., van-Deursen, J.M., Grosveld, G., Ihle, J.N. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385-395, 1998.
72. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397-409, 1998.
73. Teglund, S., McKay, C., Schuetz, E., van-Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G., Ihle, J.N. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841-850, 1998.
74. Blenis, J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. U. S. A. 90:5889-5892, 1993.
75. Johnson, G.L., Vaillancourt, R.R. Sequential protein kinase reactions controlling cell growth and differentiation. Curr. Opin. Cell. Biol. 6:230-238, 1994.
76. Fanger, G.R., Gerwins, P., Widmann, C., Jarpe, M.B., Johnson, G.L. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr. Opin. Genet. Dev. 7:67-74, 1997.
77. Cobb, M.H., Goldsmith, E.J. How MAP kinases are regulated. J. Biol. Chem. 270:14843-14846, 1995.
78. Hemmings, B.A. Akt signaling: linking membrane events to life and death decisions. Science 275:628-630, 1997.
79. Alessi-DR; Andjelkovic-M; Caudwell-B; Cron-P; Morrice-N; Cohen-P; Hemmings-BA Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO-J. 1996 Dec 2; 15(23): 6541-51AU:
80. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7:261-269, 1997.
81. Franke, T.F., Kaplan, D.R., Cantley, L.C. PI3K: downstream AKTion blocks apoptosis. Cell 88:435-437, 1997.
82. Vanhaesebroeck, B., Leevers, S.J. Panayotou, G., Waterfield, M.D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22:267-272, 1997.
83. Toker, A., Cantley, L.C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673-676, 1997.
84. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785-789, 1995.
85. del-Peso, L., Gonzalez, G.M., Page, C., Herrera, R., Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687-689, 1997.
86. Zha, J., Harada, H., Yang, E., Jockel, J., Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X (L). Cell 87:619-628, 1996.
87. Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G. S., Franke, T.F., Stanbridge, E., Frisch, S., Reed, J.C. Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318-1321, 1998.
88. Ihle, J.N. Cytokine receptor signalling. Nature 377:591-594, 1995.
89. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
90. Metcalf, D., Nicola, N.A., Robb, L. Differentiation commitment in normal hemopoiesis and leukemic transformation. J. Cell Physiol. 173:131-134, 1997.
91. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y.F., Miyazono, K., Urabe, A., Takaku, F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell Physiol. 140:323-334, 1989.
92. Chao, J.R., Chen, C.S., Wang, T.F., Tseng, L.H., Tsai, J.J., Kuo, M.L., Yen, J.J., Yang-Yen, H.F. Characterization of factor-independent variants derived from TF-1 hematopoietic progenitor cells: the role of the Raf/MAP kinase pathway in the anti-apoptotic effect of GM-CSF. Oncogene 14:721-728, 1997.
93. Huang, H.M., Lee, J.C., Hsieh, Y.C., Yang-Yen, H.F., Yen, J.J.Y. Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2. Blood, in press.1999.
94. Yen, J.J.Y., Hsieh, Y.C., Yen, C.L., Chang, C.C., Lin, S., Yang-Yen, H.F. Restoring the apoptosis suppression response to IL-5 confers on erythroleukemic cells a phenotype of IL-5-dependent growth. J. Immunol. 154:2144-2152, 1995.
Chapter II
1. McNiece, I.K., Stewart, F.M., Deacon, D.M., Quesenberry, P.J. Synergistic interactions between hematopoietic growth factors as detected by in vitro mouse bone marrow colony formation. Exp. Hematol. 16:383-388, 1988.
2. McNiece, I.K., Langley, K.E., Zsebo, K.M. Recombinant human stem cell factor (rhSCF) synergises with GM-CSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of myeloid and erythroid lineages. Exp. Hematol. 19:226-231, 1991.
3. Metcalf, D., Nicola, N.A. Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro. Effects of combination with colony-stimulating factors. Proc. Natl. Acad. Sci. U. S. A. 88:6239-6243, 1991.
4. Metcalf, D. Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: Influence of colony stimulating factors. Proc. Natl. Acad. Sci. U. S. A. 88:11310-11314, 1991.
5. Metcalf, D. The cellular basis for enhancement interactions between stem cell factor and the colony stimulating factors. Stem Cells Dayt. 11 Suppl 2:1-11, 1993.
6. Ihle, J.N. Cytokine receptor signalling. Nature 377:591-594, 1995.
7. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
8. Ashihara, E., Vannucchi, A.M., Migliaccio, G., Migliaccio, A.R. Growth factor receptor expression during in vitro differentiation of partially purified populations containing murine stem cells. J. Cell Physiol. 171:343-356, 1997.
9. McKinstry, W.J., Li, C.L., Rasko, J.J., Nicola, N.A., Johnsont, G.R., Metcalf, D. Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89:65-71, 1997.
10. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y.E., Miyazono, K., Urabe, A., Takaku, F. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell Physiol. 140:323-334, 1989.
11. Caceres-Cortes, J., Rajotte, D., Dumouchel, J., Haddad, P., Hoang, T. Product of the steel locus suppresses apoptosis in hematopoietic cells. Comparison with pathways activated by granulocyte macrophage colony-stimulating factor. J. Biol. Chem. 269:12084-12091, 1994.
12. Yen, J.J.Y., Hsieh, Y.C., Yen, C.L., Chang, C.C., Lin, S., Yang-Yen, H.F. Restoring the apoptosis suppression response to IL-5 confers on erythroleukemic cells a phenotype of IL-5-dependent growth. J. Immunol. 154:2144-2152, 1995.
13. Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kou, M.L., Yen, J.J.Y., Yang-Yen, H.F. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol. Cell Biol. 18:4883-4898, 1998.
14. Morgensten, J.P., Land, H. Advanced mammalian gene transfer: High titer retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acid Res. 18:3587-3596, 1990.
15. Wilkinson, M. RNA isolation: a mini-prep method. Nucleic Acid Res. 16:10934, 1988.
16. Jiang, M.C., Yang-Yen, H.F., Lin, J.K., Yen, J.J.Y. Differential regulation of p53, c-myc, bcl-2 and bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 13:609-616, 1996.
17. Liu, L., Cutler, R.L., Mui, A.L.F., Krystal, G. Steel factor stimulates the serine/threonine phosphorylation of the interleukin 3 receptor. J. Biol. Chem. 269:16774-16779, 1994.
18. Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C., Croce, C.M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097-1099, 1984.
19. Cleary, M.L., Smith, S.D., Sklar, J. Cloning and structural analysis of cDNA for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14:18) translocation. Cell 47:19-28, 1986.
20. Garcia, I., Martinou, I., Tsujimoto, Y., Martinou, J.C. Prevention of programmed cell death of sympathetid neurons by the bcl-2 proto-oncogene. Science 258: 302-304, 1992.
21. Bissonnette, R.P., Echeverri, F., Mahboubi, A., Green, D.R. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552-554, 1992.
22. Allsopp, T.E., Wyatt, S., Paterson, H.F., Davies, A.M. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73:295-307, 1993.
23. Chretien, S., Moreau-Gachelin, F., Apiou, F., Courtois, G., Mayeux, P., Dutrillaux, B., Cartron, J.P., Gisselbrecht, S., Lacombe, C. Putative oncogenic role of the erythropoietin receptor in murine and human erythroleukemia cells. Blood 83:1813-21, 1994.
24. Metcalf, D., Nicola, N.A., Robb, L. Differentiation commitment in normal hemopoiesis and leukemic transformation. J. Cell Physiol. 173:131-134, 1997.
25. Cynshi, O., Satoh, K., Shimonaka, Y., Hattori, K., Nomura, H., Imai, N., Hirashima, K. Reduced response to granulocyte colony-stimulating factor in W/Wv and Sl/Sld mice. Leukemia 5:75-77, 1991.
26. McDonnell, T.J., Deane, N., Platt, F.M., Nunez, G., Jaeger, U., McKearn, J.P., Korsmeyer, S.J. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57:79-88, 1989.
27. Katsumata, M., Siegel, R.M., Louie, D.C., Miyashita, T., Tsujimoto, Y., Nowell, P.C., Greene, M.I., Reed, J.C. Differential effects of Bcl-2 on T and B cells in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 89:11376-11380, 1992.
28. Strasser, A., Elefanty, A.G., Harris, A.W., Cory, S. Progenitor tumors from Em-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. EMBO J. 15:3823-3834, 1996.
29. Harnois, D.M., Que, F.G., Celli, A., LaRusso, N.F., Gores, G.J. Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatol. 26:884-890, 1997.
30. Saegusa, M., Okayasu, I. Down-regulation of bcl-2 expression is closely related to squamous differentiation and progesterone therapy in endometrial carcinomas. J. Pathol. 182:429-436, 1997.
31. Karakas, T., Maurer, U., Weidmann, E., Miething, C.C., Hoelzer, D., Bergmann, L. High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann. Oncol. 9:159-165, 1998.
32. Hasegawa, T., Matsuno, Y., Shimoda, T., Hirohashi, S., Hirose, T., Sano, T. Frequent expression of bcl-2 protein in solitary fibrous tumors. Jpn. J. Clin. Oncol. 28:86-91, 1998.
33. Wang, D.G., Liu, W.H., Johnston, C.F., Sloan, J.M., Buchanan, K.D. Bcl-2 and c-Myc, but not bax and p53, are expressed during human medullary thyroid tumorigenesis. Am. J. Pathol. 152:1407-1413, 1998.
34. Bradbury, D.A., Zhu, Y.M., Russell, N.H. Bcl-2 expression in acute myeloblastic leukaemia: relationship with automous growth and CD34 antigen expression. Leuk. Lymph. 24:221-228, 1997.
35. 李建全. 老鼠A1基因之選殖及其定性分析o 中國文化大學生物科技研究所碩士論文o 1996.Chapter III
1. Sanderson, C.J., O''Garra, A., Warren, D.J., Klaus, G.G.B., Eosinophil differentiation factor also has B-cell growth factor activity: Proposed name interleukin 4. Proc. Natl. Acad. Sci. U. S. A. 83:437-440, 1986.
2. Swain, S.L., McKenzie, D.T., Dutton, R.W., Tonkonogy, S.L., English, M., The role of IL4 and IL5: Characterization of a distinct helper T cell subset that makes IL4 and IL5 (TH2) and requires priming before induction of lymphokine secretion. Immunol. Rev. 102:77-105, 1988.
3. Takatsu, K., Tominaga, A., Harada, N., Mita, S., Matsumoto, M., Takashi, T., Kikuchi, Y., Yamaguchi, N., T-cell replacing factor (TRF)/interleukin-5 (IL-5): Molecular and functional properties. Immunol. Rev. 102:107-135, 1988.
4. Huang, H.M., Lee, J.C., Hsieh, Y.C., Yang-Yen, H.F., Yen, J.J.Y. Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2. Blood, in press.1999.
5. Devos, R., Plaetinck, G., Van der Heyden, J., Cornelis, S., Vandekerckhove, J., Fiers, w., Tavernier, J. Molecular basis of a high affinity murine interleukin-5 receptor. EMBO J. 10:2133-2137, 1991.
6. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., Plaetinck, G. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific a chain and a b chain shared with the receptor for GM-CSF. Cell, 66:1175-1184, 1991.
7. Sakamaki, K., Miyajima, I., Kitamura, T., Miyajima, A. Critical cytoplasmic domains of the common b subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11:3541-3549, 1992.
8. Sato, N., Sakamaki, K., Terada, N., Arai, K., Miyajima, A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cyatoplasmic regions of the common b subunit responsible for different signaling. EMBO J. 12:4181-4189, 1993.
9. Sato, S., Katagiri, T., Takaki, S., Kikuchi, Y., Hitoshi, Y., Yonehara, S., Tsukada, S., Kitamura, D., Watanabe, T., Witte, O., Takatsu, K. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton''s tyrosine and Janus 2 kinases. J. Exp. Med. 180:2101-2111, 1994.
10. Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., Ishikawa, T., Takatsu, K. JAK2 and JAK1 constitutively associate with an interleukin-5 (IL-5) receptor a and bc subunit, respectively, and are activated upon IL-5 stimulation. Blood, 91:2264-2271, 1998.
11. Besmer, P. Kit-ligand -stem cell factor. In Garland, J. and Quesenberry, P. (eds), Colony Stimulating Factors. Marcel Dekker, New York, N.Y., pp. 369-403, 1997.
12. Reith, A.D., Ellis, C., Lyman, S.D., Anderson, D.M., Williams, D.E., Bernstein, A., Pawson, T. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J., 10:2451-2459, 1991.
13. Rottapel, R., Reedijk, M., Williams, D.E., Lyman, S.D., Anderson, D.M., Pawson, T., Bernstein, A. The Steel/W trasnduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol. Cell. Biol. 11:3043-3051, 1991.
14. Blume-Jensen, P., Ronnstrand, L., Gout, I., Waterfield, M.D., Heldin, C.H. Modulation of Kit/stem cell factor receptor-induced signaling by protein kinase C. J. Biol. Chem. 269:21793-21802, 1994.
15. Yi, T. and Ihle, J.N. Association of hematopoietic cell phoshophatase with c-Kit after stimulation with c-Kit ligand. Mol. Cell. Biol. 13:3350-3358, 1993.
16. Cutler, R.L., Liu, L., Damen, J.E., Krystal, G. Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cells. J. Biol. Chem. 268:21463-21465, 1993.
17. Duronio, V., Welham, M.J., Abraham, S., Dryden, P., Schrader, J.W. p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPase-activating protein. Proc. Natl. Acad. Sci. U. S. A. 889:1587-1591, 1992.
18. Alai, M., Mui, A.L., Cutler, R.L., Bustelo, X.R., Barbacid, M. Krystal, G. Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells. J. Biol.Chem. 267:18021-18025, 1992.
19. Kouro, T., Kikuchi, Y., Kanazawa, H., Hirokawa, K., Harada, N., Shiiba, M., Wakao, H., Takaki, S., Takatsu, K. Critical proline residues of the cytoplasmic domain of the IL-5 receptor a chain and its function in IL-5-mediated activation of JAK kinase and STAT5. Intl. Immunol. 8: 237-245, 1996.
20.Mui, A.L., Wakao, H., O''Farrell, A.M., Harada, N., Miyajima, A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 14: 1166-1175, 1995.
21.Takaki, S., Kanazawa, H., Shiiba, M, Takatsu, K. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor a chain and its function in IL-5-mediated growth signal transduction. Mol. Cell Biol. 14: 7404-7413, 1994.
22.He, T.C., Jiang, N., Zhuang, H., Quelle, D.E., Wojchowski, D.M. The extended box 2 subdomain of erythropoietin receptor is nonessential for Jak2 activation yet critical for efficient mitogenesis in FDC-ER cells. J. Biol. Chem. 269: 18291-18294, 1994.
23.Tanner, J.W., Chen, W., Young, R.L., Longmore, G.D., Shaw, A.S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J. Biol. Chem. 270: 6523-6530, 1995.
24. Kinoshita, T., Yokota, T., Arai, K. Miyajima, A. Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J. 14: 266-275, 1995.
25. Dudley, D.T., Pang, L., Decker, S.J., Bridges, A. J., Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U. S. A. 92:7686-7689, 1995.
26. Suzuki, J., Kaziro, Y., Koide, H. An activated mutant of R-Ras inhibits cell death caused by cytokine deprivation in BaF3 cells in the presence of IGF-I. Oncogene 15:1689-1697, 1997.
27. Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kuo, M.L., Yen, J.J.Y., Yang-Yen, H.F. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol. Cell. Biol. 18:4883-4898, 1998.
28. Carson, W.E., Haldar, S., Baiocchi, R.A., Croce, C.M., Caligiuri, M.A. The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl-2. Proc. Natl. Acad. Sci. U.S.A. 91:7553-7557, 1994.
29. Yee, N.S., Paek, I., Besmer, P. Role of kit-ligand in proliferation and suppression of apoptosis in mast cells: basis for radiosensitivity of White spotting and Steel mutant mice. J. Exp. Med. 179:1777-1787, 1994.
30. Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S., Miyajima, A. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21ras in IL-3-dependent hematopoietic cells. Oncogene 15:619-627, 1997.
31. Kinoshita, T., Yokota, T., Arai, K., Miyajima, A. Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells. Oncogene 10:2207-2212, 1995.
32. Sui, X., Krantz, S.B., You, M., Zhou, Z. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92:1142-1149, 1998.
33. Itoh, T., Liu, R., Yokota, T., Arai, K.I., Watanabe, S. Definition of the role of tyrosine residues of the common beta subunit regulating multiple signaling pathways of granulocyte-macrophage colony-stimulating factor receptor. Mol. Cell Biol. 18:742-752, 1998.
34. Zamorano, J., Wang, H.Y., Wang, R., Shi, Y., Longmore, G.D., Keegan, A.D. Regulation of cell growth by IL-2: role of STAT5 in protection from apoptosis but not in cell cycle progression. J. Immunol. 160:3502-3512, 1998.
35. Mui, A.L., Wakao, H., Kinoshita, T., Kitamura, T., Miyajima, A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 15:2425-2433, 1996.
36. Onishi, M., Nosaka, T., Misawa, K., Mui, A.L., Gorman, D., McMahon, M., Miyajima, A., Kitamura, T. Identification and characterization of a constitutively active Stat5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18:3871-3879, 1998.
37. Teglund, S., McKay, C., Schuetz, E., van Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G., Ihle, J.N. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841-850, 1998.
Chapter IV
1. Metcalf, D. The molecular biology and functions of the granulocyte-marcrophage colony-stimulating factors. Blood 67:257-267, 1986.
2. Clark, S. C., and Kamen, R. The human hematopoietic colony-stimulating factors. Science 236:1229-1227, 1987.
3. Sanderson, C. J. Interleukin-5, eosinophils, and disease. Blood 79:3101-3109, 1992.
4. Lopez, A. F., Vadas, M. A., Woodcock, J. M., Milton, S. E., Lewis, A., Elliott, M. J., Gillis, D., Ireland, R., Olwell, E., Park, L. S. Interleukin-5, interleukin-3, and granulocyte-macrophage colony-stimulating factor cross-compete for binding to cell surface receptors on human eosinophils. J. Biol. Chem. 266: 24741-24747, 1991.
5. Kitamura, T., Sato, N., Arai, K., and Miyajima, A. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165-1174, 1991.
6. Kishimoto, T., Taga, T., and Akira, S. Cytokine signal transduction. Cell 76: 253-262, 1994.
7. Taniguchi, T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251-255, 1995.
8. Ihle, J. N. Cytokine receptor signalling. Nature 377:591-594, 1995.
9. Schindler, C., and Darnell, J. E., Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64:621-651, 1995.
10. Darnell, J. E., Jr. STATs and gene regulation. Science 277:1630-1635, 1997.
11. Kouro, T., Kikuchi, Y., Kanazawa, H., Hirokawa, K., Harada, N., Shiiba, M., Wakao, H., Takaki, S., Takatsu, K. Critical proline residues of the cytoplasmic domain of the IL-5 receptor α chain and its function in IL-5-mediated activation of the JAK kinases and STAT5. Int. Immunol. 8:237-245, 1996.
12. Callus, B. A., and Mathey-Prevot. B. Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 91:3182-3192, 1998.
13. Silvennoinen, O., Witthuhn, B. A., Ouelle, F. W., Cleveland, J. L., Yi, T., Ihle, J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc. Natl. Acad. Sci. U. S. A. 90:8429-8433, 1993.
14. Mui, A. L., Wakao, H., O,Farrel, A., Harada, N., Miyajima, A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 14:1166-1175, 1995.
15. van der Bruggen, T., Caldenhoven, E., Kanters, D., Coffer, P., Raaijmakers J. A. M., Lammers, J. J., Koenderman, L. Interleukin-5 signalling in human eosinophils involves JAK2 tyrosine kinase and STAT1α. Blood 85:1442-1448, 1995.
16. Azam, M., Erdjument-Bromage, H., Kreider, B. L., Xia, M., Quelle, F., Basu, R., Saris, C., Tempst, P., Ihle J. N., Schindler, S. Interleukin-3 signals through multiple isoforms of stat5. EMBO J. 14:1402-1411, 1995.
17. Sakamaki, K., Miyajima, I., Kitamura, T., Miyajima, A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11:3541-3549, 1992.
18. Sato, N., Sakamaki, K., Terada, N., Arai, K., Miyajima, A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 12:4181-4189, 1993.
19. Kinoshita, T., Yokota, T., Arai, K., Miyajima, A. Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J. 14:266-275, 1995.
20. Miura, O., Cleveland, J. L., and Ihle, J. N. Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol. Cell Biol. 13:1788-1795, 1993.
21. Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O., and Ihle, J. N. AK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227-236, 1993.
22. DaSilva, L., Howard, O. M., Rui, H., Kirken, R. A., and Farrar, W. L. Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J. Biol. Chem. 269:18267-18270, 1994.
23. Quelle, F. W., Sato, N., Witthuhn, B. A., Inhorn, R. C., Eder, M., Miyajima, A., Griffin, J. D., and Ihle, J. N. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell Biol. 14:4335-4341, 1994.
24. Tanner, J. W., Chen, W., Young, R. L., Longmore, G. D., and Shaw, A. S. The conserved box 1 motif of cytokine receptors is required for association with JAK kinases. J Biol. Chem. 270:6523-6530, 1995.
25. Nakamura, N., Chin, H., Miyasaka, N., and Miura, O. An epidermal growth factor receptor/Jak2 tyrosine kinase domain chimera induces tyrosine phosphorylation of Stat5 and transduces a growth signal in hematopoietic cells. J. Biol. Chem. 271:19483-19488, 1996.
26. Sakai, I., Nabell, L., Kraft, A. S. Signal transduction by a CD16/CD7/Jak2 fusion protein. J. Biol. Chem. 270:18420-18427, 1995.
27. Sakai, I., Kraft, A. S. The kinase domain of Jak2 mediates induction of Bcl-2 and delays cell death in hematopoietic cells. J. Biol. Chem. 272:12350-12358, 1997.
28. Lacronique, V., Boureux, A., Valle, V. D., Poirel, H., Quang, C. T., Mauchauffe M., Berthou, C., Lessard, M., Berger, R., Ghysdael, J., and Bernard, O. A. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278:1309-1312, 1997.
29. Luo, H., Rose, P., Barber, D., Hanratty, W. P., Lee, S., Roberts, T MD''Andrea, A. D., and Dearolf, C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell Biol. 17:1562-1571, 1997.
30. Kolanus, W., Romeo, C., and Seed, B. T Cell Activation by clustered tyrosine kinases. Cell 74:171-183, 1993.
31. Ogata, N., Kouro, T., Yamada, A., Koike, M., Hanai, N., Ishikawa, T., and Takatsu, K. JAK2 and JAK1 Constitutively Associate With an Interleukin (IL-5) Receptorα and βc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood 91:2264-2271, 1998.
32. Kouro, T., Kikuchi, Y., Kanazawa, H., Hirokawa, K., Harada, N., Shiiba, M., Wakao, H., Takaki, S., Takatsu, K. Critical proline residues of the cytoplasmic domain of the IL-5 receptor α chain and its function in IL-5-mediated activation of the JAK kinases and STAT5. Int. Immunol. 8:237-245, 1996.
33. Quelle, F.W., Sato, N., Witthuhn, B.A., Inhorn, R.C., Eder, M., Miyajima, A., Griffin, J.D., Ihle, J.N. JAK2 associates with the bc chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell Biol. 14:4335-4341, 1994.
34. Kitamura, T., Hayashida, K., Sakamaki, K., Yokota, T., Arai, K., Miyajima, A. Reconstitution of functional receptors for human granulocyte/macrophage colony-stimulating factor (GM-CSF): evidence that the protein encoded by the AIC2B cDNA is a subunit of the murine GM-CSF receptor. Proc. Natl. Acad. Sci. U. S. A. 88:5082-5086, 1991.
35. Zhao, Y., Wagner, F., Frank, S., and Kraft, A. S. The Amino-terminal Portion of the JAK2 Protein Kinase Is Necessary For Binding and Phosphorylation of the Granulocyte-Macrophage Colony-Stimulating Factor Receptor βc Chain. J. Biol. Chem. 270:13814-13818, 1995.
36. Rodig, S.J., Meraz, M.A., White, J.M., Lampe, P.A., Riley, J.K., Arthur, C.D., King, K.L., Sheehan, K.C., Yin, L., Pennica, D., Johnson, E.M. Jr., Schreiber, R.D. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93:373-383, 1998.
37. Parganas, E., Wang, D., Stravopodis, D., Topham, D.J., Marine, J.C., Teglund, S., Vanin, E.F., Bodner, S., Colamonici, O.R., van-Deursen, J.M., Grosveld, G., Ihle, J.N. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93:385-395, 1998.
38. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93:397-409, 1998.