|
Akiyama, Y. & Ito, K. (1993) Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. J. Biol. Chem. 268, 8146-8150. Anderson, R. A., Bosron, W. F., Kennedy, F. S. & Vallee, B. L. (1975) The role of magnesium in Escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. USA, 72, 2989-2993. Anderson, R. A., Kennedy, F. S. & Vallee, B. L. (1976) The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase. Biochemistry 15, 3710-3715. Arighi, C. N., Rossi, J. P. F. C. & Delfino, J. M. (1998) Temperature-induced conformation transition of intestinal fatty acid binding protein enhancing ligand binding: A functional, spectroscopic and molecular modeling study. Biochemistry 37, 16802-16814. Aurora, R., Creamer, T. P., Srinivasan, R. & Rose, G. D. (1997) Local interactions in protein folding: Lessons from the a-helix. J. Biol. Chem. 272, 1413-1416. Bai, Y. & Englander, S. W. (1996) Future direction in folding: The multi-state nature of protein structure. Proteins: Struct. Funct. Genet. 24, 145-151. Baldwin, R. L. (1995) The nature of protein folding pathways: The classical versus the new. J. Biomol. NMR 5, 103-109. Bardez, E., Monnier, E. & Valeur, B. (1986) Absorption and fluorescence probing of the interface of Aerosol OT reverse micelles and microemulsions. J. Colloid Interface Sci. 112, 200-207. Bardez, E., Monnier, E. & Valeur, B. (1985) Dynamics of excited state reactions in reverse micelles. 2. Proton transfer involving various fluorescent probes according to their sites of solubilization. J. Phys. Chem. 89, 5031-5036. Beasley, J. R. & Hecht, M. H. (1997) Protein design: The choice of de novo sequences. J. Biol. Chem. 272, 2031-2034. Beck, R. & Burtscher, H. (1994) Expression of human placental alkaline phosphatase in Escherichia coli. Protein Express. Purif. 5, 192-197. Berger, J., Garattini, E., Hua, H. C. & Udenfriend, S. (1987) Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc. Natl. Acad. Sci. USA 84, 695-698. Bosron, W F., Anderson, R. A., Falk, M. C., Kennedy, F. S. & Vallee, B. L. (1977) Effect of magnesium on the properties of zinc alkaline phosphatse. Biochemistry 16, 610-614. Bradshaw, R. A. (1981) Amino acid sequence of Escherichia coli alkaline phosphatase . Proc. Natl. Acad. Sci. USA 78, 3473-3477. Bru, R., Schez-Ferrer, A. & Garc-Carmona, F. (1995) Kinetic models in reverse micelles. Biochem. J. 310, 721-739. Brunel, C. & Cathala, G. (1973) Activation and inhibition processes of alkaline phosphatase from bovine brain by metal ions (Mg2+ and Zn2+). Biochim. Biophys. Acta 309, 104-115. Cai, K. & Schirch, V. (1996) Structural studies on folding intermediates of serine hydroxymethyltransferase using single tryptophan mutants. J. Biol. Chem. 271, 2987-2994. Calhoun, D. B., Vanderkooi, J. M. & Englander, S. W. (1983b) Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 1533-1539. Calhoun, D. B., Vanderkooi, J. M., Woodrow, G. V. & Englander, S. W. (1983a) Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 1526-1532. Cathala, G. & Brunel, C. (1975) Bovine kidney alkaline phosphatase. J Biol. Chem. 250, 6046-6053. Chang, C. H., Angellis, D. & Fishman, W. H. (1980) Presence of a rare D-varient heat stable, placental-type alkaline phosphatase in normal human testis. Cancer Res. 40, 1506-1510. Chang, C. N. (1986) Nucleotide sequence of the alkaline phosphatase of Escherichia coli. Gene 44, 121-125. Chang, G. G. & Shiao, S. L. (1994) Possible kinetic mechanism of human placental alkaline phosphatase in vivo as implemented in reverse micelles. Eur. J. Biochem. 220, 861-870. Chang, T. C., Huang, S. M., Huang, T. M. & Chang, G. G. (1992) Human placental alkaline phosphatase. An improved purification procedure and kinetic studies. Eur. J. Biochem. 209, 241-247. Chen, H. M., Markin, V. S. & Tsong, T. Y. (1992) pH-induced folding/unfolding of staphylococcal nuclease: Determination of kinetic parameters by the sequential jump methods. Biochemistry 31, 1483-1491. Christopher, J. A. (1998) Structural and properties observation and calculation kits. Texas A & M University, Collage Station, TX USA. Cioni, P., Piras, L. & Strambini, G. B. (1989) Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase. Eur. J. Biochem. 185, 573-579. Coleman, J. E. (1992) Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441-483. Copeland, R. A. (1995) Enzymes, pp. 237, Wiley-VCH, New York. Correa, N. M., Biasutti, M. A. & Silber, J. J. (1995) Micropolarity of reverse micelles of Aersol-OT in n-hexane. J. Colloid Interface Sci. 172, 71-76. Cross, G. A. M. (1987) Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell 48, 179-181. Csermely, P., Kajtar, J., Hollosi, M., Jalsovszky, G., Holly, S., Kahn, C. R., Gergly, P., Jr., Soti, C., Mihaly, K. & Somogyi, J. (1993) ATP induces a conformational change of the 90-kD heat shock protein. J. Biol. Chem. 268, 1901-1907. Currarino, G., Neuhauser, E. B. D., Reyersbach, G. C. & Sobel, E. H. (1957) Hypophosphatasia. Am. J. Roentgenol. 78, 392-419. Dawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K. M. (1986) Data for Biochemical Research, 3rd ed., pp. 370, Clarendon Press, Oxford, U. K. Dill, K. A. & Chan, H. S. (1997) From levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19. Dill, D. A (1999) polymer principles and protein folding. Protein Sci. 8, 1166-1180. Dill, K. A. & Shortle, D. (1991) Denatured states of proteins. Annu. Rev. Biochem. 60, 795-825. Dill, K. A. (1997) Additivity principles in biochemistry. J. Biol. Chem. 272, 701-704. Dixon, M. & Webb, E. C. (1979) Enzymes, 3rd ed., pp. 343-344, Academic Press, New York. Dobryszycki, P., Rymarezuk, K., Bulaj, G. & Rochman, M. (1999) Effect of acrylamide on aldolase structure. I. Induction of intermediate states. Biochim. Biophys. Acta 1431, 338-350. Doellgast G. J. & Fishman, W. H. (1976) L-Leucine, a specific inhibitor of a rare human placental alkaline phosphatase phenotype. Nature 259, 49-51. Doty, S. B. & Schofield, B. H. (1976) Enzyme histochemistry of bone and cartilage cells. Prog in histochem cytochem. 8, 1-38. Eftink, M. R. & Ghiron, C. A. (1981) Fluorescence quenching studies with proteins. Anal. Biochem. 114, 199-227. Eftink, M. R. (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66, 482-501. Farley, J. R., Ivey, J. L. & Baylink, D. J. (1980) Human skeletal alkaline phosphatase. J. Biol. Chem. 255, 4080-4086. Fedorov, A. N. & Baldwin, T. O. (1997) Cotranslational protein folding. J. Biol. Chem. 272, 32715-32718. Fersht, A. Enzyme structure and mechanism. 2nd ed., pp. 182-185, Freeman, New York. Fishman W. H. & Sie G. G. (1971) Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine and placenta; L-phenylalanine, L-tryptophan and L-homoarginine. Enzymologia 41, 141-167. Fishman W. H., Green, S. & Inglis, N. I. (1963) L-phenylalanine: An organ specific, stereospecific inhibitor of human intestinal alkaline phosphatase. Nature 198, 685-686. Fishman, W. H. (1990) Alkaline phosphatase isozymes: recent process. Clin. Biochem. 23, 99-104. Fraser, D. (1957) Hypophosphatasia. Am. J. Med. 22, 730-746. Ghelis, C. & Yon, J. (1982) Protein folding, Academic Press, New York. Ghosh, N., Sarkar, S. N. & Roy, K. B. (1998) Excess nucleoside triphosphates (or zinc) allow recovery of alkaline phosphatase activity following refolding under reducing conditions. Biochemistry 37, 15542-15547. Goldstein, D. J., Blasto, L. & Harris, H. A. (1982) A search for trace expression of placental-like alkaline phosphatase in non-malignant human tissues: Demonstration of its occurrence in lung, cervix, testis and thymus. Clin. Chim. Acta 125, 63-75. Goldstein, D. J., Rogers, C. & Harris, H. A. (1980) Placental alkaline phosphatase in non-malignant human cervix. Proc. Natl. Acad. Sci. USA, 77, 4226-4228. Gez-Puyon, M. T. & Gez-Puyon, A. (1998) Enzymes in low water systems. Crit. Rev. Biochem. Mol. Biol. 33, 53-89. Gottlieb, A. J. & Sussman, H. H. (1968) Human placental alkaline phosphatase: Molecular weight and subunit structure. Biochim. Biophys. Acta 160, 167-171. Guex, N. & Peitsch, M. C. (1997) Swiss-Model and the Swiss-PDB viewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723. Heimo, H., Palmu, K. & Suominen, I. (1998) Human placental alkaline phosphatase: Expression in Pichia pastoris, purification and characterization of the enzyme. Protein Express. Purif. 12, 85-92. Henthorn, P. S., Raducha, M., Kadesch, T., Weiss, M. J. & Harris, H. (1988) Sequence and characterization of the human intestinal alkaline phosphatase gene. J. Biol. Chem. 263, 12011-12019. Holtz, K. H., Stec, B. & kantrowitz, E. R. (1999) A model of the transition state in the alkaline phosphatase reaction. J. Biol. Chem. 274, 8351-8354. Howard, A. D., Berger, J., Gerber, L., Familletti, P. & Udenfriend, S. (1987) Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase. Proc. Natl. Acad. Sci. USA 84, 6055-6059. Hoylaerts, M. F. & Millan, J. L. (1991) Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Eur. J. Biochem. 202, 605-616. Huang, G. S. & Oas, T. G. (1995) Submillisecond folding of monomeric lambda repressor. Proc. Natl. Acad. Sci. USA 92, 6878-6882. Huang, T. M., Hung, H. C., Chang, T. C. & Chang, G. G. (1998) Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles. Biochem. J. 330, 267-275. Hulett, F. M. (1991) Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimentional structure. J. Biol. Chem. 266, 1077-1084. Hull, W. E., Halford, S. E., Gutfreund, H., & Sykes, B. D. (1976) 31P nuclear magnetic resonance study of alkaline phosphatase: The role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Biochemistry 15, 1547-1561. Hummer, C. & Millan, J. L. (1991) Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-Leucine. Biochem. J. 274, 91-95. Hung, H. C. & Chang, G. G. (1998) Biphasic denaturation of human placental alkaline phosphatase in guanidinium chloride. Proteins: Struct. Funct. Genet. 33, 49-61. Hung, H. C. & chang, G. G. (1999) Partitioning of 4-nitrophenol in Aerosol-OT reverse micelles. J. Chem. Soc. Perkin Trans. 2, in press. Hung, H. C., Huang, T. M. & Chang, G. G. (1997) Reverse micelles as model system to study leaving group effects on alkaline phosphatase-catalysed hydrolysis. J. Chem. Soc. Perkin Trans. 2, 2757-2760. Hung, H. C., Huang, T. M. & Chang, G. G. (1998) Inhibitory effect of magnesium ion on the human placental alkaline phosphatase-catalyzed reaction in a reverse micellar system. J. Protein Chem. 17, 99-106. Jaenicke, R. (1996) Protein folding and association: In vitro studies for self-organization and targeting in the cell. Curr. Top. Cell. Regul. 34, 209-314. Janeway, C. M. L., Xu, X. & Murphy, J. E., Chaidaroglou, A. & Kantrowitz, E. R. (1993) Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stablilzation and catalysis. Biochemistry 32, 1601-1609. Jemmerson, R. & Low M. G. (1987) Phosphatidylinositol ancher of HeLa cell alkaline phossphatase. Biochemistry 26, 5703-5709. Jennings, P. A. & Wright, P. E. (1993) Formation of a molten globule intermediate early in the kinetic fording pathway of apomyoglobin. Science 262, 892-896. Kam, W., Clauser, E., Kim, Y. S., Kan, Y. W. & Rutter, W. J. (1985) Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc. Natl. Acad. Sci. USA 82, 8715-8719. Kaneko, Y. (1987) Structural characteristics of the PHO8 gene encoding repressible alkaline phosphatase in Saccharomyces cerevisiae. Gene 58, 137-148. Kelly, S. M. & Price, N. C. (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta 1338, 161-185. Khmelnitsky, Y. L., Neverova, I. N., Polyakov, V. I., Grinberg, V. Y., Levashov, A. V. & Martinek, K. (1990) Kinetic theory of enzymatic reactions in reversed micellar systems. Eur. J. Biochem. 190, 155-159. Kim, E. E. & Wyckoff, H. W. (1989) Structure of alkaline phospharase. Clin. Chim. Acta 186, 175-188. Kim, E. E. & Wyckoff, H. W. (1991) Reaction mechanism of alkaline phosphatase based on crystal structures. J. Mol. Biol. 218, 449-464. Kim, P. S. & Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631-660. Kohn, W. D., Mant, C. T. & Hodges, R. S. (1997) a-helical protein assembly motifs. J. Biol. Chem. 272, 2583-2586. Kurganov, B. I., Shkarina, T. N., Malakhova, E. A., Davydov, D. R. & Chebotareva, N. A. (1989) Kinetics of soybean lipoxygenase reaction in hydrated reversed micelles. Biochimie 71, 573-578. Kuwajima, K. (1996) The molten globule state of b-lactalbumin. FASEB J. 10, 102-109. Lee, B. & Richards, F. M. (1971) The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379-400. Lehrer, S. S. (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophanyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254-3262. Lin, C. W. & Fishman W. H. (1972) L-homoarginine: an organ-specific, uncompetitive inhibitor of human liver and bone alkaline phosphohydrolases. J. Biol. Chem. 247, 3082-3087. Linden, G., Chappelet-Tordo, D. & Lazdunski, M. (1977) Milk alkaline phosphatase: Stimulation by Mg2+ and properties of the Mg2+ site. Biochim. Biophys. Acta 483, 100-106. Lez, P., Rodruez, A., Gez-Herrera, C. & Schez, F. (1992) Oxidation of Fe(CN)6 (IV) by S2O8 (II) in AOT-oil-water microemulsions. J. Chem. Soc. Faraday Trans. 88, 2701-2704. Low, M. G. & Saltiel, A. R. (1988) Structural and funvtional roles od glycosyl-phosphatidylinositol in membranes. Science 239, 268-275. Luisi, P. L. & Magid, L. J. (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. Crit. Rev. Biochem. 20, 409-474. Luisi, P. L. & Steinmann-Hofmann, B. (1987) Activity and conformation of enzymes in reverse micellar solutions. Methods Enzymol. 136, 188-216. Luisi, P. L. (1985) Enzymes hosted in reverse micelles in hydrocarbon solution. Angew. Chem. Int. Ed. Engl. 24, 439-450. Luisi, P. L., Giomini, M., Pileni, M. P. & Robinson, B. H. (1988) Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta 947, 209-246. Makiya, R. & Stigbrand, T. (1992) Placental alkaline phosphatase has a binding site for the human immunoglobulin-G Fc portion. Eur. J. Biochem. 205, 341-345. Makiya, R. & Stigbrand, T. (1992a) Placental alkaline phosphatase is related to human IgG internalization in HEp2 cells. Biochem. Biophys. Res. Commun. 182, 624-630. Makiya, R. & Stigbrand, T. (1992b) Placental alkaline phosphatase as the placental IgG receptor. Clin. Chem. 38, 2543-2545. Martin, D. C., Pastra-randis, S. C. & Kantrowitz, E. R. (1999) Amino acid substitution at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability. Protein Sci. 8, 1152-1159. Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmelnitsky, Y. L. & Levashov, A. V. (1989) Micellar enzymology: Its relation to membranology. Biochim. Biophys. Acta 981, 161-172. Martinek, K., Levashov, A. V., Klyachko, N., Khmelnitski, Y. L. & Berezin, I. V. (1986) Micellar enzymology. Eur. J. Biochem. 155, 453-468. Matthew, J. C. (1993) Fundamentals of receptor, enzyme, and transport kinetics. pp. 15, CRC press, Boca Raton. McComb, R. B., Bowers, G. N. & Posen, S. (1979) Alkaline Phosphatases, Plenum Press, New York. Menger, F. M. & Saito, G. (1978) Adsorption, displacement, and ionization in water pools. J. Am. Chem. Soc. 100, 4376-4379. Menger, F. M. & Yamada, K. (1979) Enzyme catalysis in water pools. J. Am. Chem. Soc. 101, 6731-6734. Mersol, J. V., Steel, D. G. & Gafni, A. (1993) Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Biophys. Chem. 48, 281-291. Micanovic, R., Bailey, C. A., Gerber, B. L., Pan, Y. C. E., Hulmes, J. D. & Udenfriend, S. (1988) Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol-glycan to become the carboxyl terminus of the mature enzyme. Proc. Natl. Acad. Sci. USA 85, 1398-1402. Miggiano, G. A. D., Mordente, A., Pischiutta, M. G., Martorana, G. E. & Castelli, A. (1987) Early conformational changes and activity modulation induced by guanidinium chloride on intestinal alkaline phosphatase. Biochem. J. 248, 551-556. Millan, J. L. & Manes, T. (1988) Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc. Natl. Acad. Sci. USA 85, 3024-3028. Millan, J. L. (1986) Molecular cloning and sequence analysis of human placental alkaline phosphatase. J. Biol. Chem. 261, 3112-3115. Millan, J. L. (1988) Oncodevelopmental expression and structure of alkaline phosphatase genes. Anticancer Res. 8, 995-1004. Millan, J. L. (1990) Oncodevelopmental alkaline phosphatases: Inserch for a function. Prog. Clin. Biol. Res. 344, 453-475. Millan, J. L., Eriksson, A. & Stigbrand T. A. (1982) A possible new locus od alkaline phosphatase expressed in human testis. Human Genet. 62, 293-295. Morjana, N. A., McKeone, B. J. & Gilbert, H. F. (1993) Guanidine hydrochloride stabilization of a partially unfolded intermediate during the reversible denaturation of protein disulfide isomerase. Proc. Natl. Acad. Sci. USA 90, 2107-2111. Morrison, J. F. & Walsh, C. T. (1988) The behavior and sighificance of slow-binding enzyme inhibitors. Adv. Enzymol. 61, 201-301. Mulivor R. A., Plotkin, L. I. & Harris, H. (1978) Differential inhibition of the products of the human alkaline phosphatase loci. Ann. Hum. Genet. Lond. 42, 1-13. Murphy, J. E. & Kantrowitz, E. R. (1994) Why mammalian alkaline phosphatases much more active than bacterial alkaline phosphatases? Mol. Microbio. 12, 351-357. Murphy, J. E., Tibbitts, T. T. & Kantrowitz, E. R. (1995) Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J. Mol. Biol. 253, 604-617. Murphy, J. E., Xu, X. & Kantrowitz, E. R. (1993) Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitutions in Escherichia coli alkaline phosphatase. J. Biol. Chem. 268, 21497-21500. Neale, F. C., Clubb, J. S., Hotchkis, D. & Posen, S. (1965) Heat stability of human placental alkaline phosphatase. J. Clin. Pathol. 18, 359-363. Neet, K. E. & Anislie, G. R. Jr. (1980) Hysteretic enzymes. Methods. Enzymol. 64, 192-226. Neet, K. E. & Timm, D. E. (1994) Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation. Protein Sci. 3, 2167-2174. Ogata, S., Hayashi, Y., Takami, N. & Ikehara, Y. (1988) Chemical characterization of the membrane-anchoring domain of human placental alkaline phosphatase. J. Biol. Chem. 263, 10489-10494. Orenberg, J. B., Schaffert, J. M. & Sussman, H. H. (1981) Human placental alkaline phosphatase: Effects on conformation by ligands which alter catalytic activity. Arch. Biochem. Biophys. 211, 327-337. Pace, C. N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266-280. Pace, C. N. (1990) Measuring and increasing protein stability. Trends Biotechnol. 8, 93-98. Pace, C. N., Shirley, B. A. & Thomson, J. A. (1989) Measuring the conformational stability of a protein. Protein Structure: A Practical Approach, pp. 311-331, IRL Press, Oxford, U. K. PetitClerc, C. (1976) Quantitative fractionation of alkaline phosphatase isoenzymes according to their thermostability. Clin. Chem. 22, 42-48. Privalov, P. L. (1996) Intermediate states in protein folding. J. Mol. Biol. 258, 707-725. Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83-229. Rao, N. M. & Nagaraj, R. (1991) Anomalous stimulation of Escherichia coli alkaline phosphatase activity in guanidinium cholride. J. Biol. Chem. 266, 5018-5024. Redman, C. A., Thomas-Oates, J. E., Ogata, S., Ikehara, Y & Ferguson, A. J. (1994) Structure of the glycosylphosphoinositol membrane anchor of human placental alkaline phosphatase. Biochem. J. 302, 861-865. Rej, R. (1977) Effect on incubation with Mg2+ on the measurement of alkaline phosphatase activity. Clin. Chem. 23, 1903-1910. Richards, F. M. (1977) Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151-176. Ruddon, R. W & Bedows, E. (1997) Assisted protein folding. J. Biol. Chem. 272, 3125-3128. Sakiyama, T., Robinson, J. C. & Chou, J. Y. (1979) Characterization of alkaline phosphatases from human first trimester placentas. J. Biol. Chem. 254, 935-938. Santoro, M. M. & Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl a-chymotrypsin using different denaturants. Biochemistry 27, 8063-8068. Sarkar, S. N. & Ghosh, N. (1996) Reversible unfolding of Escherichia coli alkaline phosphatase: Active site can be constituted by a number of pathways. Arch. Biochem. Biophys. 330, 174-180. Schindler, T., Herrler, N., Marahiel, M. A. & Schmid, F. X. (1995) Extremely rapid protein folding in the absence of intermediates. Nature Struct. Biol. 2, 663-673. Seoud, O. A., Chinelatto, A. M. & Shimizu, M. R. (1982) Acid-base indicator equilibria in the presence of Aerosol-OT aggregates in heptane. Ion exchange in reversed micelles. J. Colloid Interface Sci. 88, 420-427. Sheetz, M. P. (1993) Glycoprotein motility and dynamic domains in fluid plasma membranes. Annu. Rev. Biophys. Biomol. Struct. 22, 417-431. Siegel, D. P. (1984) Inverted micellar structures in bilayer membranes. Biophys. J. 45, 399-420. Smith, R. E. & Luisi, P. L. (1980) Micellar solubilization of biopolymers in hydrocarbon solvents III. Empirical definition and acidity scale in reverse micelles. Helv. Chim. Acta 63, 2302-2311. Somogyi, B., Papp, S., Rosenberg, A., Seres, I., Matko. J., Welch, G. R. & Nagy, P. (1985) A double-quenching method for studying protein dynamics: Separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophors. Biochemistry 24, 6674-6679. Sone, M., Kishigami, S., Yoshihisa, T. & Ito, K. (1997) Roles of disulfide bonds in bacterial alkaline phosphatase. J. Biol. Chem. 272, 6174-6178. Sosnick, T. R., Mayne, L., Hiller, R. & Englander, S. W. (1994) The barriers of protein folding. Nature Struct. Biol. 1, 149-156. Sowadski, J. M., Handschumacher, M. D., Murthy, H. M. K., Foster, B. A. & Wyckoff, H. W. (1985) Refined structure of alkaline phosphatase from E. coli at 2.8 ?resolution. J. Mol. Biol. 186, 417-433. Sreerama, N. & Woody, R. W. A. (1993) Self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209, 32-44. Subramaniam, V., Bergenhem, N. C. H., Gafni, A. & Steel, D. G. (1995) Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase. Biochemistry 34, 1133-1136. Sugawara, T., Kuwajima, K. & Sugai, S. (1991) Folding of staphylococcal nuclease A studied by equilibrium and kinetic circular dichroism spectra. Biochemistry 30, 2698-2706. Sussman, H. H. & Gottlieb, A. J. (1969) Human placental alkaline phosphatase: II. Molecular and subunit properties of the enzyme. Biochim. Biophys. Acta 194, 170-179. Takami, N., Ogata, S., Oda, K. Misumi, Y. & Ikehara, Y. (1988) Biosynthesis of placental alkaline phosphatase and its post-translational modification by glycophospholipid for membrane-anchoring. J. Biol. Chem. 263, 3016-3021. Terpko, A. T., Serafin, R. J. & Bucholtz, M. L. J. (1981) Conjugate acid娞onjugate base equilibrium in reverse micelles. J. Colloid Interface Sci. 84, 202-205. Thiede, M. A. (1988) Structure and expression of rat osteosarcoma (ROS 17/2.8) alkaline phosphatase: Product of a single copy gene. Proc. Natl. Acad. Sci. USA 85, 319-323. Tsai, C. J., Kumar, S., Ma, B. & Nussinov, R. (1999) Folding funnels, binding funnels, and protein function. Protein Sci. 8, 1181-1190. Tsonis, P. A., Argraves, W. S. & Millan, J. L. (1988) A putative functional domain of human placental alkaline phosphatase predicted from sequence comparisons. Biochem. J. 254, 623-624. Tsou, C. L. (1995) Inactivation proceeds overall molecular conformation changes during enzyme denaturation. Biochim. Biophys. Acta 1253, 151-162. Ueda, M. & Schelly, Z. A. (1989) Reverse micelles of Aresol-OT in beneze. 4. Investigation of the micropolarity using 1-methyl-8-oxyquinolinium betaine as a probe. Langmuir 5, 1005-1008. Waks, M. (1986) Proteins and peptides in water-restricted environments. Proteins: Struct. Funct. Genet. 1, 4-15. Weiss, M. J., Cole, D. E. C., Ray, K., Whyte, M. P & Lafferty, M. A. (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophos-phatasia. Proc. Natl. Acad. Sci. USA 85, 7666-7669. Weiss, M. J., Henthorn, P. S., Cole, Lafferty, M. A., Slaughter, C., Raducha, M. & Harris, H. (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc. Natl. Acad. Sci. USA 83, 7182-7186. Whitby, L. G. & Moss, D. W. (1975) Analysis of heat inactivation curves of alkaline phosphatase isoenzymes in serum. Clin. Chim. Acta 59, 361-367. Xu, X. & Kantrowitz, E. R. (1991) A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity. Biochemistry 30, 7789-7796.
|