(3.239.33.139) 您好!臺灣時間:2021/03/08 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳振威
研究生(外文):Chen Chen-Wei
論文名稱:學生概念生態組成因子之研究-以密度/浮沈概念為例
論文名稱(外文):A STUDY OF STUDENTS’ COMPONENTS OF CONCEPTUAL ECOLOGIES─“DENSITY/FLOATING-SINKING CONCEPTS ” AS EXAMPLES
指導教授:陳龍川陳龍川引用關係
指導教授(外文):Chen Long-Chuan
學位類別:碩士
校院名稱:國立花蓮師範學院
系所名稱:國小科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:208
中文關鍵詞:概念改變模型概念生態密度/浮沈概念
外文關鍵詞:Conceptual change modelConceptual ecologiesconceptual ecologydensityfloatingsinking
相關次數:
  • 被引用被引用:22
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要是藉由密度/浮沈概念教學的教室觀察與訪談,探討學生的概念生態。內容包括:概念生態組成因子、概念生態組成因子間的關連性、密度/浮沈概念以及密度/浮沈概念與概念生態間的關連性。
由於概念生態的研究必須從學習者的各個面向加以詮釋,因此本研究是以Posner的「概念改變模型」理論為基礎,並且藉由Tyson等人的多向度的詮釋架構(multidimentional interpretive framework),探究學生概念生態組成因子以及各因子間的相關性;也就是從知識論(epistemology)、本體論(ontology)與社會/情意(social/affective)三個向度來探究學生的概念生態。
本研究是針對12位國小六年級學生進行三次訪談(單元教學前、中、後各一次),並於密度單元教學中做教室觀察與錄影。研究者藉由分析訪談與教室觀察所得資料得到以下的研究結果:
1.學生的概念生態學生呈現出八個組成因子:對知識的認同、先備知識、學習的本質、概念的本質、問題解決的策略、情意領域、科學的本質以及其他。
2.學生概念生態中的某些組成因子呈現出明顯的關連性:情意領域與學習的本質,對知識的認同、問題解決的策略與科學的本質。
3.學生分別呈現出不同的的密度/浮沈概念。
4.學生的密度/浮沈概念與概念生態間也呈現出明顯的關連性。例如,有正確密度/浮沈概念的學生,其學習本質的層次也比較高。
基於以上的研究結果可以得知,學生的概念生態組成因子是互相關連的,同時學生的概念生態也影響學生對於密度/浮沈概念的學習方式與學習成就;也就是說,學生學習科學的方式會因為他們的概念生態結構的不同而有所差異。因此教師對於學生概念生態的瞭解將有助於科學概念的教學。
This study represents an investigation of students’ conceptual ecologies by probing and analyzing the students’ classroom discourses and interview protocols about the concept of density/floating-sinking. This study aims on the components of students’ conceptual ecologies, the inter-relationships between these components, concept of density/ floating-sinking, and the relationships between students’ concept of density/floating-sinking and their conceptual ecologies.
For the need of analyzing the students’ conceptual ecologies, a variety of dimensions have to be considered. Therefore this study adapts Posner’s Conceptual Change Model and Tyson’s Multidimensional Interpretive Framework, which includes epistemological, ontological and social/affective dimensions, as the theoretical framework to investigate students’ conceptual ecologies.
The research subjects are twelve six-graders. Data collected from three interviews arranged before, during and after the density unit was taught, and videotapes recorded while the unit was proceeding were analyzed. The research findings are stated as below:
Eight components of students’ conceptual ecologies are represented. These components are epistemological commitments, prior knowledge, the nature of learning, the nature of conceptions, problem-solving strategies, affective domain, the nature of science and others.
Two relationships between components of students’ conceptual ecologies are found. One is the relation between the nature of learning and affective domain, another is the relation among epistemological commitments, problem-solving strategies and the nature of science.
Six different concepts identified from the research subjects are attributed to objects'' floating and sinking. These concepts are density, volume or area, weight, hollow, air and force.
Students’ concepts of floating and sinking are related to students’ conceptual ecologies. For example, students who have correct concepts of floating and sinking tend to be at a higher level of the nature of learning.
Recommendations for teaching science based on the research findings are further discussed.
第一章 緒論1
第一節 研究動機1
第二節 研究的重要性3
第三節 研究目的與待答問題4
一、 研究目的4
二、 待答問題4
第四節 名詞定義5
一、 概念改變模型5
二、 概念生態組成因子5
第五節 研究範圍與限制8
第六節 論文的編排8
第二章 文獻探討9
第一節 概念改變9
一、 概念9
二、 迷思概念10
三、 概念改變模型的歷史背景11
四、 概念改變的類型11
第二節 概念改變模型13
一、 概念狀態13
二、 概念生態15
第三節 密度/浮沈概念24
一、 密度/浮沈概念的迷思概念24
二、 密度/浮沈概念教學之相關研究26
三、 國內現行國小密度概念課程之設計27
第三章 研究方法29
第一節 研究架構與流程29
一、 研究架構29
二、 研究流程30
第二節 研究環境與脈絡32
一、 學生32
二、 學校33
三、 教學33
第三節 研究方法與工具37
一、 資料收集37
二、 資料分析40
第四章 研究結果與討論45
第一節 概念生態組成因子45
一、 個別的結果與討論46
二、 分層的結果與討論59
第二節 概念生態組成因子間的關連性66
一、 個別的結果與討論66
二、 整體的結果與討論86
第三節 密度/浮沈概念88
第四節 密度/浮沈概念與概念生態的關連性91
第五章 結論與建議93
第一節 結論93
一、 就概念生態組成因子而言93
二、 就概念生態組成因子間的關連性而言93
三、 就密度/浮沈概念而言94
四、 就密度/浮沈概念與概念生態的關連性而言94
第二節 教育上的意涵94
第三節 建議96
參考文獻99
中文部份99
英文部份101
附錄109
附錄一 體積與重量單元109
附錄二 第一次訪談題目111
附錄三 第二次訪談題目112
附錄四 第三次訪談題目113
附錄五 「體積與重量」單元教學活動設計116
附錄六 呈現出學生概念生態組成因子的對話脈絡125
附錄七 呈現出學生密度/浮沈概念的對話脈絡155
附錄八 田野筆記162
附錄九 學生上課的練習單範例167
附錄十 個別訪談逐字稿172
訪談一172
訪談二179
訪談三(1)190
訪談三(2)202
表目次
表2- 1 密度與浮沈的解釋系統26
表3- 1 訪談原始資料轉錄代碼表42
表3- 2 研究結果之呈現方式42
表3- 3 原始資料引用方式42
表4- 1 概念生態組成因子及其主題46
表4- 2 學生呈現的概念生態組成因子及其主題58
表4- 3 不同學習成就學生對知識的認同59
表4- 4 不同學習成就學生的先備概念一覽表60
表4- 5 不同學習成就學生的學習本質61
表4- 6 不同學習成就學生的概念本質61
表4- 7 不同學習成就學生的問題解決策略62
表4- 8 不同學習成就學生在情意領域的表現63
表4- 9 不同學習成就學生的科學本質觀64
表4- 10 不同學習成就學生的其他概念生態65
表4- 11 小吟的概念生態一覽表66
表4- 12 小宇的概念生態一覽表68
表4- 13 小典的概念生態一覽表71
表4- 14 小偉的概念生態一覽表73
表4- 15 小新的概念生態一覽表74
表4- 16 小君的概念生態一覽表76
表4- 17 小珊的概念生態一覽表78
表4- 18 小瑄的概念生態一覽表79
表4- 19 小凡的概念生態一覽表80
表4- 20 小玫的概念生態一覽表82
表4- 21 小玲的概念生態一覽表84
表4- 22 小穎的概念生態一覽表86
表4- 23 學生認為影響物體浮沈的主要因素總表90
表4- 24 正確與非正確密度/浮沈概念學生的組成因子之主題次數91
圖目次
圖2- 1 多向度的詮釋架構18
圖3- 1 研究架構30
圖3- 2 研究流程31
圖3- 3 重量與體積的視覺表示模型35
圖3- 4 物體浮沈的視覺表示模型35
圖3- 5 磚塊狀分佈的密度表示模型36
圖3- 6 網狀分佈的密度表示模型36
圖3- 7 訪談流程37
圖4- 1 小吟的概念生態組成因子關連圖67
圖4- 2 小宇的概念生態組成因子關連圖69
圖4- 3 小典的概念生態組成因子關連圖72
圖4- 4 小偉的概念生態組成因子關連圖73
圖4- 5 小新的概念生態組成因子關連圖74
圖4- 6 小君的概念生態組成因子關連圖77
圖4- 7 小珊的概念生態組成因子關連圖77
圖4- 8 小瑄的概念生態組成因子關連圖79
圖4- 9 小凡的概念生態組成因子關連圖81
圖4- 10 小玫的概念生態組成因子關連圖83
圖4- 11 小玲的概念生態組成因子關連圖84
圖4- 12 小穎的概念生態組成因子關連圖85
參考文獻
中文部份
王美芬(民80):自然科錯誤概念之研究。台北市立師院學報,第22期,367-369。
王龍錫(民80):我國學生自然科概念發展與診斷教學之研究:(一)小學生浮力概念發展之結構圖研究。國科會專題研究成果報告(NSC79-0111-S-153-02-D)台北:行政院國家科學委員會。
台灣省國民學校教師研習會編印(民83):國民小學自然科新課程概說。板橋:台灣省國民學校教師研習會。
江新合、許榮富、林寶山(民80):我國學生自然科概念發展與診斷教學之研究:(Ⅰ)中學生浮力相關概念發展及其相關迷思概念的分析研究。行政院國家科學委員會專題研究計畫成果報告。
林顯輝(民80):我國國中地球科學及國小自然科學教科書科學本質含量之分析。載於台灣省第二屆教育學術論文發表會論文集數理教育(233-255頁)。新竹:國立新竹師範學院。
官翰德(民88):概念增強式電腦模擬對兒童密度概念學習成就之影響。國立花蓮師範學院國小科學教育研究所碩士論文。
許嘉玲(民86):浮力學習之概念改變。國立台灣師範大學科學教育研究所碩士論文。
國立編譯館編印(民83):國民小學自然科第十二冊。台北:國立編譯館。
陳龍川(民81):花蓮師院學生簡單直流電路迷思概念類型及其分佈調查。花師數理教育學報,第1期,65-80。
黃台珠(民73):概念的研究及其意義。科學教育月刊,第66期,44-56。
黃政傑(民87):質的教育研究:方法與實例。台北:漢文書店。
黃湘武,黃寶鈿(民75):學生推理能力與概念發展之研究。認知與學習研討會專集(第一次)。台北市:行政院國家科學委員會。
劉伍貞(民85):國小學生月相概念學習之研究。國立屏東師範學院國民教育研究所碩士論文。
英文部份
Aikenhead, G. S. (1988). An analysis of four ways of assessing student beliefs about STS topics. Journal of Research in Science Teaching, 25(8), 607-629.
Ausubel, D. P. (1963). Cognitive structure and the facilitation of meaningful verbal learning. Journal of Teacher Education, 14(2), 217-222.
Beeth, M. E. (1993). Dynamic aspects of conceptual change instruction. Unpublished Dissertation. University of Wisconsin-Madison.
Beeth, M. E. (1995). Conceptual change instruction: Some theoretical and pedagogical issues. Paper presented at annual meeting of National Association for Research in Science Teaching. San Francisco, CA.
Beeth, M. E. (1998). Facilitating conceptual change learning: The Need for teachers to support metacognition. Journal of Science Teacher Education, 9(1), 49-61.
Biddulph, E. (1983). Students’ views of floating and sinking. Learning in science project. Working Paper No.116.Waikato University Science Education Research Unit, Hamilton, New Zealand.
Biddulph, F., & Osborne, R. (1984). Children''s questions and science teaching: An alternative approach. Learning in Science Project (Primary). Working Paper. No.117. Waikato University Science Education Research Unit. Hamilton, New Zealand.
Blum, A. (1986). Students'' knowledge and beliefs and concerning environmental issues in four countries. Journal of Environmental Education, 18(2), 7-13.
Brody, M., & Koch, H. (1989). An assessment of 4th, 8th, and 11th grade students'' knowledge related to marine science and natural resource issues. Journal of Environmental Education, 21(2), 16-26.
Champagne, A. B., Gunstone, R. F., & Klopfer, L. E. (1985). Instructional consequences of students'' knowledge about physical phenomena. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp.61-90). Orlando, FL: Academic Press.
Carey, S. (1985). Conceptual Change in Childhood, MIT Press, Cambridge, Massachusetts.
Carey, S., Evans, R., Honda, M., Jay, E., Unger, C. (1989). An experiment is when you try it and see if and see if it works: A study of grade 7 Students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514-529.
Carr, M. (1996). Interview about instance and interview about events. In D. Treagust, R. Duit & B. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 44-53). New York, NY: Teachers College Press.
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science education. Review of Educational Research, 63(1), 1-49.
Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes. A theory of conceptual change for learning science concepts [special issue]. Learning and Instruction, 4, 27-43.
Cobern, W. W. (1994). Points: Belief, understanding, and the teaching of evolution. Journal of Research in Science Teaching, 31, 583-590.
Demastes, S. S., Good, R. G., & Peebles, P. (1995). Students'' conceptual ecologies and the process of conceptual change in evolution. Science Education, 79(6), 637-666.
Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the "Cognitive conflict" Strategy for conceptual change-Some implications, difficulties, and problems. Science Education, 74(5), 555-569.
Driver, R. (1989) Students'' conceptions and the learning of science. International Journal of Science Education, 11, 481-490.
Driver, R., & Erikson, G. (1983). Theories in action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10,37-60.
Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
Duit, R. (1993). Research on students conceptions--Developments and trends. In J. D. Novak (Ed.), Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics (pp.1-30), Ithaca, NY: Misconceptions Trust.
Eylon, B., & Linn, M. (1988). Learning and instruction: An examination of four research perspectives in science education. Review of Educational Research, 58, 251-302.
Goldhammer, A., & Isenberg, S. (1984). Operation: Frog (educational software), Scholastic, Inc., New York.
Head J. (1986). Research into ‘alternative framework’: Promise and problems. Science & Technological Education, 4(2), 203-211.
Hennessey M.G., (1991). Analysis of conceptual change and status change in sixth-graders’ concepts of force and motion. Unpublished Dissertation. University of Wisconsin-Madison.
Hewson, M. G. A’B. & Hewson, P. W. (1983). Effects of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20, 731-743
Hewson, M. G. A’B. (1981). Effects on instruction using students’ prior knowledge and conceptual change strategies on science learning. Part I : Development, application and evaluation of instruction. Paper presented at annual meeting of the National Association for Research in Science Teaching.
Hewson, M. G. A’B. (1981). Science education in a society of mixed cultures. South African Journal of Science, 77, 197-200.
Hewson, M. G. A’B. (1985a). Cultural metaphors: Some implications for science education. Anthropology and Educational Quarterly, 16(1), 31-46.
Hewson, M. G. A’B. (1985b). The role of intellectual environment in the origin of conceptions: An exploratory study. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211-231). Orlando, FL: Academic Press.
Hewson, M. G. A’B. (1986). The acquisition of scientific knowledge Analysis and representation of student conceptions concerning density. Science Education, 70(2), 159-170.
Hewson, M. G. A’B. (1988). The ecological context of knowledge: Implications for learning science in developing countries. Journal of Curriculum Studies, 20(4), 317-326.
Hewson, M. G. A’B., & Hamlyn, D. (1984). The influence of intellectual environment on conceptions of heat. European Journal of Science Education, 6(3), 245-262.
Hewson, P. W. (1980). Learning and teaching science. South African Journal of Science, 76, 397-401
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383-396.
Hewson, P. W. (1982). A case study of conceptual change in special relativity: The influence of prior knowledge in learning. European Journal of Science Education, 4(1), 61-78.
Hewson, P. W. (1984). Microcomputers, conceptual change and the design of science instruction: Examples from kinematics and dynamics. South African Journal of Science, 80, 15-20.
Hewson, P. W. (1985a). Diagnosis and remediation of an alternative conception of velocity using a microcomputer program. American Journal of Physics, 53(7),684-690
Hewson, P. W. (1985b). Epistemological commitments in the learning of science: Examples from dynamics. European Journal of Science Education, 7(2), 163-172.
Hewson, P. W., & Hewson, M. G. A''B. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 1-13.
Hewson, P. W., & Hewson, M. G. A''B. (1988). An appropriate conception of teaching science: A view from studies of science learning. Science Education, 72(5), 597-614.
Hewson, P. W., & Hewson, M. G. A''B. (1991). The status of students'' conceptions. In R. Duit, F. Goldberg & H. Niedderer (Eds.). Research in physics learning: Theoretical issues and empirical studies (pp. 59-73). Kiel, Germany: IPN.
Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11,541-553.
Hulland, C., & Munby, H. (1994). Science, stories, and sense-making: A comparison of qualitative data from wetlands unit. Science Education, 78(2), 117-136.
Inhelder, B., &Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Book.
Kolb, D. A. (1976). Learning Style Inventory: Technical Manual. Englewood Cliffs. NJ: Prentice Hall.
Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago, IL: Chicago University Press.
Lawson, A. E. (1993). The importance of analogy: A prelude to the special issue. Journal of Research in Science Teaching, 30(10), 1213-1214.
Lemberger, J. (1995). The relationship between a model-building problem-solving classroom and conceptual change learning. Unpublished Dissertation. University of Wisconsin-Madison.
Linder, C. J. (1993). A challenge to conceptual change. Science Education, 77(3), 293-300.
Nersessian, N. (1992). Constructing and instructing: The role of "Abstraction techniques" in creating and learning physics. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 48-68). Albany, NY: State University of New York Press.
Novak, J. D. (1993). Proceedings of the second international seminar: Misconceptions and Educational Strategies in Science and Mathematics, Vol.Ⅰ-Ⅲ. Ithaca, NY: Cornell University Press.
Osborne, R. J., Bell, B. F., & Gilbert, J.K. (1983). Science teaching and children’s view of the world. European Journal of Science Education, 5(1), 1-14.
Osborne, R., & Wittrock, M.C. (1983). Learning science: A generative process. Science Education, 67, 489-508.
Park, H. (1995). A study of students'' components of conceptual ecologies. Unpublished Dissertation. University of Wisconsin-Madison.
Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York, NY: Basic Books, Inc.
Piaget, J., & Inhelder, B. (1974). The child’s construction of quantities. London: Routledge & Kegan Paul.
Pines, A. L., & West, L. H. T. (1986). Conceptual understanding and science learning: An interpretation of research within a source-of -knowledge framework. Science Education, 70(5), 583-604.
Pintrich, P. R., Marx. R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of moti-vational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167-200.
Pope, M., & Gilbert, J. (1993). Personal experience and the construction of knowledge in science. Science Education, 67(2), 193-203.
Posner, G.J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward theory of conceptual change. Science Education, 66, 211-227.
Roth, K. J. (1990). Developing meaningful conceptual understanding in science. In B. F. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (pp. 139-175). Hillsdale, NJ: Erlbaum.
Roth, W. M., & Roychoudhury, A. (1994). Physics students'' epistemologies and views about knowing and learning. Journal of Research in Science Teaching, 31(1), 5-30.
Rowell, J. A., & Dawson, C. J. (1977a). Teaching about floating and sinking: an attempt to link cognitive psychology with classroom practice. Science Education, 61, 243-251.
Rowell, J. A., & Dawson, C. J. (1977b). Teaching about floating and sinking: Further studies toward closing the gap between cognitive psychology and classroom practice. Science Education, 61, 527-540
Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: A case study of the development of the concepts of size, weight, and density. Cognition, l21, 177-237
Smith, C., Snir, J., & Grosslight, L. (1986).Promoting 6th graders’ understanding of density, a computer modeling approach. Technical Report, The Educational Technology Center, Graduate School of Educational, Harvard University Cambridge, MA.
Smith, C., Snir, J., & Grosslight, L. (1987).Teaching for conceptual change using a computer modeling approach: the case of weight/density differentiation. Technical Report, The Educational Technology Center, Graduate School of Education, Harvard University, Cambridge, MA.
Smith, C., Snir, J., & Grosslight, L. (1992). Using conceptual models to facilitate conceptual change: The case of weight-density differentiation. Cognition and Instruction, 9(3), 221-283
Snir, J. (1991). Sink or float-what do the experts think? The historical development of explanations for floatation. Science Education, 75(5), 595-609.
Snir, J., Smith, C., & Grosslight, L. (1989). Not the whole truth: An essay on building a conceptually enhanced computer simulation for science teaching. In D. N. Perkins, J. L. Schwartz, M. M. West, & M. S. Wiske (Eds.), Teaching for understanding in the age of technology.
Stavy, R., & Tirosh, D. (1993). When analogy is perceived as such. Journal of Research in Science Teaching, 30(10), 1229-1239.
Stepans, J. I., Beiswenger, R. E., & Dtche, S. (1986) Misconceptions die hard, Science Teacher, 53(6), 65-69
Strauss, S., Globerson, T., &Mintz, R. (1983). The influence of training for the atomistic schema on the development of the density concept among gifted and nongifted children. Journal of Applied Developmental Psychology, 4, 125-147.
Strike, K. A., & Posner, G. J. (1982). Conceptual change and science teaching. European Journal of Science Education, 4(3), 231-240
Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. H. T. West and A. L. Pines (Eds.), Cognitive Structure and Conceptual Change (pp. 211-231). Orlando, FL: Academic Press.
Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). Albany, NY: State University of New York Press.
Sutton, C., & West, L. (1982). Investigating children’s existing ideas about science. Collected works-Conference proceedings.
Thorley, N. R. (1990). The role of the conceptual change model in the interpretation of classroom interactions. Unpublished doctoral dissertation, University of Wisconsin-Madison.
Toulmin, S. E. (1972). Human Understanding. Princeton University Press.
Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and 1nstruction, 4, 45-69.
Vosniadou, S., & Brewer W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive psychology, 24, 535-585.
Wadsworth, B. J. (1971). Piaget''s theory of cognitive development. NY: David Mckay Company, Inc.
Wadsworth, B. J. (1989). Piaget''s theory of cognitive affective development (4th ed.). White plains, NY: Longman Inc.
Waterman, M. A. (1982). College biology students'' beliefs about scientific knowledge: Foundation for study of epistemological commitments in conceptual change. Unpublished Dissertation, Cornell University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔