(3.231.29.122) 您好!臺灣時間:2021/02/25 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖怡雯
研究生(外文):Liao Yi Wen
論文名稱:改進學生對電化學瞭解之研究
論文名稱(外文):Improving Students Understanding of Electronchemistry
指導教授:林煥祥林煥祥引用關係
指導教授(外文):Huann Shyang Lin
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:135
中文關鍵詞:電化學短時間群集評量
相關次數:
  • 被引用被引用:23
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採行動研究法(Action Research)的設計,探討研究者自行編寫的電化學補充教材運用於實際教學上時,對學生的學習成就有何影響?研究對象為台北市某一所常態編班的國中,共計一位理化教師及一班國中三年級學生(N=25)參與研究;評量方式以短時間群集評量設計探討該班學生在教學過程中的學習進步情形,並在教學結束後實施總結性評量,從測驗結果隨機選取高、中、低成就群學生各三人進行半結構式晤談,以從中瞭解學生在教學後產生的迷失概念及產生迷失概念的可能原因。本研究所獲致的研究結果如下:
一、 從短時間群集評量曲線可看出全班的平均分數在教學期間有上揚的趨勢,且從教學期間授課節數與全班的平均分數相關係數值可知該班的電化學學習成就,很顯然的隨著老師的教學而逐漸提高。
二、 不論高成就或低成就的學生,在經由使用電化學補充教材教學後,其電化學學習成就有顯著的進步,但以高成就群進步的分數為高,並且顯著高於低成就群的學生。
三、 電化學補充教材及教學對學生建構下列電化學3個主要概念有很大的幫助。
(一)、伏打電池形成通路時“電子及離子的流動情形”:
1. 伏打電池的外電路由電子移動來溝通,內電路藉由離子的移動來溝通。
2. 電子不能存在溶液中。
(二)、電解液的電中性。
(三)、鹽橋在伏打電池的功用。
四、 學生在經由使用電化學補充教材教學後,仍然存在為數不少的迷失概念。
五、 學生在教學後對電化學產生迷失概念的可能來源有下列三點:
(一)、學生同時學習物理電學和電化學。
(二)、學生先備知識的不足。
(三)、補充教材編排上的缺失。
This study is designed to explore the effectiveness of the innestigator-developed supplementary teaching materials on electrochemistry. A chemistry teacher and a class of the ninth grade (N=25) were involved in this study. The Time Series Design and a post-test were used to evaluate and analyze the students learning in the whole teaching process.In addition, nine students, three from each of the high , medium and low achievement clusters, were interviewed by the author in a semi-constructive way to find out the misconceptions of students generated after teaching and possible reasons of these misconceptions. The final conclusions of this research are as flollows:
Ⅰ From Time Series Design cruve, it shows an increasing tendency on the average score of the whole class during the teaching period. The correlation coefficient between the number of instructing sessions and the average score of the class, we could find that the learning achievements on electrochemistry increase step by step obviously with the teacher''''''''s instruction.
Ⅱ Whether one student is of the high- achievement cluster or the low one, his/her learning achievemevt on eletrochemistry increases obviously after the teacher uses the supplementary materials on eletrochemistry. However, the students of high-achievement cluster make much more progress than those of low- achievement one.
Ⅲ The supplementary materials and instruction on eletrochemistry could help students a lot in constructing the following main concept about eletrochemistry:
1. When the volt cell generates electricity,the electron and ion have the current conduction as follows:
1-1 The external electric circuit of the volt cell is communicated by the movement of electrons; the internal one is communicated by the ions.
1-2 The electron can not exist in the solution.
2. Electrical neutrality of a solution.
3. The effect of the salt bridge in the volt cell.
Ⅳ Some students still have lots of misconceptions after using the supplementary materials about eletrochemistry.
Ⅴ The misconception about eletrochemistry of the students probably were resulted from the following reasons:
1. The students study physical electrics and eletrochemistry simulatiously.
2. The prior knowledge which the studens have owned is not enough.
3. More ground works can be improved in the supplementary materials.
第一章 緒論
第一節 研究背景與研究動機
第二節 研究目的
第三節 名詞釋義
第四節 研究範圍與研究限制
第二章 文獻探討與理論依據
第一節 國中生對電化學所須具有的正確知識
第二節 學生對電化學的迷失概念及其來源
第三節 有效的教學策略
第四節 短時間群集評量設計
第三章 研究方法及過程
第一節 研究工具的發展
第二節 研究問題
第三節 實施過程
第四節 資料分析
第四章 研究結果
第一節 電化學補充教材及教學對國中生學
習電化學學習進步情形的影響
第二節 電化學補充教材及教學對學生建構正確概念的幫助
第三節 教學後學生對電化學的迷失概念
第四節 學生對電化學產生迷失概念的可能來源
第五章 結果討論與研究建議
第一節 結果討論
第二節 應用與建議
參考文獻
附錄
附錄一 電化學補充教材
附錄二 電化學學習成就測驗卷
一、 中文部份:
黃寶鈿(民78):我國學生邏輯思考能力發展的研究。中國測驗學會測驗
年刊,第36輯,31-46。
郭重吉、許玫理(民81):從科學哲學觀點的演變探討科學教育的過去現
在與未來。彰化師大學報,第三期。
陳啟民(民 81):發展紙筆測驗以探究高一學生對直流電路的迷失概。
國立彰化師範大學科學教育研究所碩士論文。
陳恆迪(民82):國中學生物理概念類比學習之研究。國立彰化師範大學
科學教育研究所碩士論文。
陳瓊森(民82):設計有效的類比和謀形來幫助學生學習科學概念。國科
會專題研究計劃成果報告。
林振霖、楊瑞典(民83):中學生分子概念與認知能力的相關研究。台灣
師範大學:中華民國第十屆科學教育學術研討
會論文彙編,309-347。
郭人仲(民83):國中生物概念的類比學習之研究。國立彰化師範大學科
學教育研究所碩士論文。
姚 珩(民 83):實驗教學法淺論。中等教育,第45卷第2期。
鐘聖校(民 84):國小自然科課程教育研究。台北:五南出版社。
林煥祥(民84):由短時間群集評量方式評估新任理化教師之教學。國科
會專題研究計劃成果報告。
張川木(民85):大一、高三學生力學錯誤概念之研究。國立高雄師範大
學教育研究所碩士論文。
林煥祥(民85):初任理化教師之教學成效評量。科學教育學刊,第四卷
第二期,113-134。
蕭碧茹(民 85):圖形類比融入國中理化教學之研究。國立高雄師範大
學教育研究所碩士論文。
國立編譯館(民 86):國民中學理化第四冊。
二、英文部份:
Arnold, M., & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideals in electricity. International Journal of Science Education, 9(5), 553-563.
Al-Soudi, H. (1989). Confusion over eletrochemical conventions. Journal of Chemical Education, 66, 630.
Bean, T.W., Singer, H., & Cowen, S. (1990). Learning concepts from biology text through study guide. Journal of Educational Research, 83(4), 233-237.
Brown, D.E. (1994). Facilitating conceptual change using analogies and explanatory models. International Journal of Science Education, 16(2), 201-214.
Brown, D.E. (1992). Using examples and analogies to remediate misconceptions un physucs: Factors influencing conceptual change. Journal of Research in Science Teaching, 29(1), 17-34.
Brown, D.E., & Clement,J. (1987). Overcoming misconceptions in mechanics. A comparison of two example-based teaching strategies. Paper presented at Annual Meeting of the American Education Research Association, Washington,DC (ERIC Document Reproduction Service No, ED283 712.)
Burns, J.C. & Okey, J.R. (1985). Effect of teacher use of analogies on achievement of high school biology students with varying levels of cognitive ability and prior knowledge. Paper presented at the annual metting of the National Association for Reasearch in Science Teaching. (ERIC Document Reproduction Service No, ED 254 431).
Buttls,B., & Smith,R. (1987). What do students perceive as difficult in H.S.C.chemistry. Australian Science Teachers Journal, 32(4), 45-51.
Cautu,L. ,& Herron, J. (1978). Concrete and formal Piagetian stages and science concept attainment. Journal of Research in Science Teaching, 15, 135-143.
Carter, C. Ph.D. (1987). Thesis, Purdue University.
Chmpbell, D.T., & Stanley, J.C. (1966). Experimental and quasi-experimental designs for research. Chicago: Rand McNally and Company.
Cho, H., Kahle, J.B., & Nordland, F.H. (1985). An investigation of high school textbooks as sources of misconception and difficulties in genetics and some suggestions for teaching genetics.Science Esucation, 69(5), 707-719.
Clement, J. (1993). Using bridging analogy in scientific thinking: examples from a problem solving interview. (ERIC Document Reproduction Service No, ED287 702).
Dechsri, P., Espinose, N.B., Mui, L.S.M., & Nanji, N.S.V.K. (1987). Development of manipulative skill observation checklist for Penang''''''''s upper-secondary schools. Penang, Malaysia:RECSAM.
Driscoll, D.R. (1960). The Lechatrlier principle. Australian Science Teachers Journal, 6, 7-15.
Drugge, N.L., & Kass, H. (1978, March). The effect of selected analogies on understanding of scientific explanations. Paper presented at the annual metting of the National Association for Reasearch in Science Teaching. (ERIC Document Reproduction Service No, ED 152 537).
Dupin, J.J., & Johsua, S. (1989). Analogies and modelling analogies in teaching: Some examples in basic electricity. Science Education, 73, 207-224.
Dykstra, D.I.Jr. (1982). A learning cycleon exponential growth and the energy crises. The Physics Teacher, 20(4), 245-246.
Fortman, J.J. (1994). Application and analogues. Journal of Chemical Education, 71(5), 430-432.
Fransworth, C.H., & Mayer, V.J. (1984). An assessment of the validity and discrimination of the intensive time series design by monitoring learning differences between students with different cognitive tendencies. Journal of Research in Science Teaching, 21(4), 345-355.
Fredette, N., & Lockhead,J. (1980). Students'''''''' conception of simple circuits. The Physics Teacher, 18, 194-198.
Gabel, D.L., & Sherwood,R.D. (1980). Effect of using analogies on chemistry achievement according to Piagetian level. Science Education, 64(5), 709-716.
Garnett, P.J. (1988). Students'''''''' understanding of electrochemical and electrolytic cells: Implications for chemistry curricula and classroom practice. Unpublished master''''''''sthesis, Curtin University of Technology, Western Australia.
Garnett, P.J., & Treagust, D.F. (1990). Implications of reasearch on students'''''''' understanding of electrochemistry for impoving science curricula and classroom practice. International Journal of Science Education, 12(2), 147-156.
Garnett, P.J., & Treagust, D.F. (1992a). Conceptual difficulties experianced by senior high school students of electrochemistry:electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29(2), 121-142.
Garnett, P.J., & Treagust, D.F. (1992b). Conceptual difficulties experianced by senior high school students of electrochemistry:electrochemical (glavanic) and electrolytic cell. Journal of Research in Science Teaching, 29(2), 121-142.
Glynn, S.M. (1991). Explaining science concepts: A teaching with analogies model. In S. Glynn, R. Yeany & B. Britton (Eds.), The Phychology of Learning Science(pp219-240). Hissdale, N.J.: Erlbaum.
Glynn, S.M. (1994). Teaching science wuth analogies: A strategy for teachers and textbook authors. Reading Research Report No.15. (ERIC Document Reproduction Service No, ED373 306).
Harrison, A.G., & Treagust,D.F. (1993): Teaching with analogies:a case study in grade-10 optics. Journal of Research in Science Teaching, 30(10), 1291-1307.
Hofstein, A., & Lmnetta,V.N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52, 201-217.
Holliday, W.G., Brunuer,L.L., & Donais, E.L. (1978). Differential cognitive and affective responses to flow diagrams in science. Journal of Research in Science Teaching, 14, 129-138.
Ivins, J., & Markle, G. (1989). A comparison of two instructional strategies involoing science laboratory activities. Paper presented at the annual metting of the National Association for Reasearch in Science Teaching, San Francisco, CA.
Johnstone, A.H. (1980). Nyholm lecture: chemical education research: facts, findings and consequences. Chemical Society Reviews, 9, 365-380.
Johnstone, A.H. (1991). Thinking about thinking. International Newsletter on Chemical Education, 36, 7-11.
Johnstone, A..H., & El-Banna, H. (1986). Capicities, demands and process: A predictive model for science education. Education in Chemistry, 23, 80-84.
Johnson, D.M., & Johnson, R.T. (1987). Learning together and alone: Cooperative, competitive and individualistic learning. Englewood Cliffts: Prentice-Hall.
Klauer, K.J. (1989). Teaching for analogical transfer as a means of improving problem-solving, thinking and learing. Instructional Science, 18, 177-192.
Lawson, A.E. (1993). The importance of analogy: A prelude to the special issue. Journal of Research in Science Teaching,30(10), 1213-1214.
Lin, H., & Shiau, B. (1996). The effectiveness of teaching science with pictorial analogies. Research in Science Education, 26(4), 495-511.
Mann, L., Taylor, R.s., Proger, B.B., Dungan, R.H., & Tidey, W. (1970). The effects of serial retesting on the relative performance of high and low test anxious
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔