跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王慈卿
研究生(外文):Tzu Ching Wang
論文名稱:椰子及檳榔之相調查及印度擬葉之生態研究
論文名稱(外文):The study of the Fauna of Acarian Species and the Ecology of Raoiella indica Hirst(Acari : Tenuipalpidae) on Coconut and Betel Nut Palms
指導教授:賴博永賴博永引用關係
指導教授(外文):Po-Yung Lai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:89
中文關鍵詞:相調查印度擬葉椰子檳榔生活史棲群動態
外文關鍵詞:acarian fauna studyred palm mitecoconutbetel nutlife cyclepopulation dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
印度擬葉Raoiella indica除了為害可可椰子(coconut)、檳榔(betel nut) 外,亦可生活於棗椰樹(date palm)及其他棕櫚科植物上,若於葉部為害,多棲息於葉背近葉脈處,吸食汁液造成葉片枯黃或產生病態的黃褐色而提早落葉,影響生長甚鉅。環島台灣全省調查椰子及檳榔植株上所有類種類,發現有害及益共十五種,其中以印度擬葉所佔的密度最高,分布的範圍亦最廣。此一生可分為卵期(egg stage)、幼期(larval stage)、前若期(protonymphal stage)、後若期(deutonymphal stage)及成期(adult stage)等五個生長時期。飼育在25、30、35℃,相對濕度75±5%,光照週期12L:12D之恆溫培養箱中,以培養皿法之椰子葉、檳榔葉及改良封閉飼養室法之椰子苗葉、檳榔苗葉來飼育。前者恆溫中各發育期所需時間及發育總日數以溫度愈高所需時間愈短,發育總日數雄最長者,為飼育於25℃椰子葉--培養皿者需34.48±3.71天,最短者為飼育於35℃檳榔葉-培養皿者,需20.50±3.51天; 雌最長者,為飼育於25℃檳榔葉-培養皿者,需45.00±7.07天,最短者為飼育於35℃椰子葉-培養皿者,需29.00±1.00天。後者因為只有二種恆溫的比較,故恆溫中各發育期所需時間及發育總日數各溫度間無顯著差異。在不同溫度及飼育方式下,溫度愈高且以培養皿飼育者,壽命較短,雄壽命以飼育25℃椰子苗-改良封閉飼養室者最高,為14.17±6.27天,最低為飼育於35℃椰子葉-培養皿者,為2.33±1.53天;雌壽命,以飼育於30℃之檳榔苗-改良封閉飼養室者最高,為22.00±7.78天,最低為飼育於35℃椰子葉-培養皿者,為6.33±4.04天,雌一生產卵量在各種溫度下皆偏低,最高者為於30℃椰子苗-改良封閉飼養室的11.00±1.41粒,最少者為於室溫檳榔葉-培養皿之2.60±1.71粒。
由不同溫度下之發育速率所得之直線迴歸方程式,分別計算各發育期之發育零度及累積有效積溫,發育零度愈低者累積有效積溫愈高;印度擬葉有性生殖產下雌性後代,孤雌單性生殖產下雄性後代。
以椰子葉、檳榔葉之培養皿及椰子苗、檳榔苗之改良封閉飼養室,分別於不同溫度下飼養比較,發現飼養於25℃之椰子苗-改良封閉飼養室育成率最高,其假設平均值3.77可到達齡期近於後若期,最差者為飼養於35℃檳榔葉-培養皿,其假設平均值2.10可到達齡期約於幼期。因為在一般常用的培養皿飼養下,不僅需常常更換新鮮葉片且類逃逸或淹死機率大,故改以改良封閉飼養室來飼養,大大提高了飼養育成率。
印度擬葉在田間的棲群變動,受到氣象因子濕度、總日照時數及前次調查總數影響。擬葉田間棲群密度與濕度呈顯著負相關(P<0.01),而與總日照時數及前次調查總數呈顯著正相關(P<0.01)。由擬葉密度資料,求出之均方對平均之比值(S2/m)均大於1,及平均與均方對數值之直線迴歸關係圖,由斜率(slope)均大於1,常數項(intercept)均小於1,故判定其在田間呈聚集分布。
由椰子及檳榔二種作物及東西南北四個方位,來探討印度擬葉對寄主偏好性及特定方位選擇性之測定,發現其仍是偏好椰子寄主,因田間椰子數總是顯著高於檳榔(P<0.05),但其對四方位是沒有顯著的差異選擇性(P>0.05)。

The red palm mite, Raoiella indica, is known to infest, besides coconut and betel nut palms, date palm and other palms. It is usually found along the mid-rib on the underside of a palm leaf. The mite inflicted considerable damage to plants by sucking up plant sap, turning leaves to yellow or dark brown, and causing a premature leaf drop. Results of the study of the acarian fauna on coconut and betel nut palms in Taiwan indicated that there was a total of 15 mite species, injurious and beneficial. Of these species, the red palm mite was the most prevalent with the widest distribution. The life cycle of this mite was divided into five different stages; namely, egg, larva, protonymph, deutonymph, and adult. When reared at 25, 30, 35°C in a growth chamber at RH 75±5% and 12L:12D with two different rearing methods, the petri dish method (containing either a section of mature coconut or betel nut leaf) and the modified closed-cell rearing method (containing either a portion of a leaf of coconut or betel nut seedling), the developmental time for each stage and the sum of the developmental time decreased with the increase of temperature. The sum of the developmental time of a male was the longest at 34.48 ± 3.71 days when it was reared with the petri dish method containing a coconut leaf at 25°C and the shortest was at 20 ± 3.51 days when it was reared with petri dish method containing a betel nut leaf at 35°C. For a female, the longest sum of the developmental time was at 45 ± 7.07 days when it was reared with petri dish method containing a betel nut leaf at 25°C and the shortest was at 29 ± 1.00 days when it was reared with the petri dish method containing a coconut leaf at 35°C. The developmental time and the sum of the developmental time for the male and female were not significantly different when they were reared with the modified closed-cell method. The lack of significant difference may be attributed to the fact that there were only two temperatures used for making the comparison. The longevity of the mite decreased with the increase of the temperature when it was reared with the petri dish method. The longevity of a male was the longest at 14 ± 17 days when it was reared at 25°C with the modified closed-cell method containing a coconut seedling leaf and the shortest was at 2.33 ± 1.53 days when it was reared at 35°C with the petri dish method containing a coconut leaf. The longevity of a female was the longest at 22.00 ± 7.78 days when it was reared at 30°C with the modified closed-cell method containing a coconut seedling leaf and the shortest was at 6.33 ± 4.04 days when it was reared at 35°C with the petri dish method containing a coconut leaf. The number of eggs laid by a female was relatively low at all temperatures. The number was the largest at 11.00 ± 1.41 eggs when it was reared at 30°C with the modified closed-cell method containing a coconut seedling leaf and the least was at 2.60 ± 1.71 eggs when it was reared at room temperature with the petri dish method containing a betel nut leaf.
Based on the coefficients of the linear regressions under different temperatures, the mite with a lower developmental zero had a higher thermal unit accumulation. The mite underwent both bi-parent and uni-parent reproductions; the former resulted in exclusively female progenies and the latter resulted in only male progenies.
When comparing the success rates for a mite to develop from egg to adult at different temperatures with different rearing methods, the success rate was the highest when it was reared at 25°C with the modified closed-cell method. Its averaged hypothetical number was 3.77, which means the rearing nearly reached the deutonymph stage. The rate was the lowest when it was reared at 35°C with the petri dish method containing a betel nut leaf. Its averaged hypothetical number was 2.10, which means the rearing reached the larval stage. Since the petri dish method required several changes of fresh leaves during the course of the study and had high rates of drowning and escaping, the rearing method was switched to the modified closed-cell method, which significantly improved the rates of success in rearing the mite from egg to adult.
The population dynamics of the mite in the field were influenced by climatic factors, such as humidity, total day length and the population density of the previous sampling. The population density of the mite was negatively correlated with the humidity (P<0.05) and positively correlated with the total day length and the population density of the previous sampling (P<0.01). Based on the population density of the mite, its distribution in the field was determined to be in clusters as the ratio of S2/m was greater than 1, the slope of the linear regression was greater than 1 and its intercept was smaller than 1.
The preferences of the mites to coconut and betel nut palm and to the directions of the location of the two hosts in an orchard were investigated. The results indicated that the mite preferred coconut to betel nut as the mite density was significantly higher on the coconut than on the betel nut (P<0.05). The mite, however, showed no significant preference in the directions of the location of the host plants (P>0.05).

目 錄
中文摘要………………………………………………………………………. I
英文摘要……………………………………………………………………...III
誌謝……………………………………………………………………………V
目錄………………………………………………………………………….VI
圖目錄……………………………………………………………………....VIII
表目錄……………………………………………………………………….. IX
壹、 前言……………………………………………………………………….1
貳、 研究方法與材料………………………………………………………….7
一、 椰子及檳榔植株之相調查……………………………………….7
二、 印度擬葉生活史研究…………………………………………...10
三、 不同寄主植物、飼養方式及溫度下飼養印度擬葉育成
率之比較…………………………………………………………...13
四、 孤雌生殖及有性生殖之性別探討………………………………...14
五、 田間棲群動態調查………………………………………………...15
(一) 印度擬葉族群動態及影響因子之分析...…………………16
(二)印度擬葉族群在椰子園及檳榔園之空間分布………….....16
六、 印度擬葉對椰子、檳榔二種寄主植物的偏好及方位的選擇性測定……………………………………………………………………17
參、 結果與討論……………………………………………………………...18
一、 椰子及檳榔植株之相調查…………………………….……..…18
二、 印度擬葉生活史研究…………………………………………...36
(一)印度擬葉之生活史及形態..……………………………….…36
(二)不同飼養方式、寄主植物、溫度及雌雄對印度擬葉生長發育之影響………………………………………………………...42
(三)不同飼養方式、寄主植物、溫度及雌雄對印度擬葉繁殖力、壽命及發育總日數之影響………………………………..49
(四)印度擬葉各發育期之發育零度及累積有效積溫…………..56
三、 不同寄主植物、飼養方式及溫度對飼養印度擬葉育成率之比較……………………………………………………………………60
四、 孤雌生殖及有性生殖之性別探討………………………………...63
五、 田間棲群動態調查………………………………………………...64
(一)印度擬葉族群動態及影響因子之分析...…………………..64
(二) 印度擬葉族群在椰子園及檳榔園之空間分布………...…74
六、 印度擬葉對椰子或檳榔寄主植物的偏好及不同方位選擇性測定…………………………………………………………………….80
七、 結論…………………………………………………………………82
肆、參考文獻…………………………………………………………...……83
圖目錄
1. 正常葉片………………………………………………………………….5
1-1 .被害葉片…………………………………………………………………5
2. 印度擬葉Raoiella indica………………………………………….6
3. 台灣椰子與檳榔之葉片、花穗及果實於15縣共51採樣區之分布圖……………………………………………………………………….9
4. 改良封閉飼養室Modified closed-cell rearing method…………11
5-1.印度擬葉之卵……………………………………………………….39
5-2.印度擬葉之幼………………………………………………………9
5-3.印度擬葉之前若……………………………………….………..40
5-4.印度擬葉之後若………………………………………………….40
5-5.印度擬葉之雌成………………………………………………….41
5-6.印度擬葉之雄成………………………………………………….41
6-1 .屏東縣老埤椰子園印度擬葉族群變動與氣象因子之關係……….68
6-2 .屏東縣老埤檳榔園印度擬葉族群變動與氣象因子之關係……….69
6-3 .屏東縣麟洛椰子園印度擬葉族群變動與氣象因子之關係……….70
6-4 .屏東縣麟洛檳榔園印度擬葉族群變動與氣象因子之關係…….…71
6-5 .屏東縣新庄椰子園印度擬葉族群變動與氣象因子之關係……….72
6-6 .屏東縣新庄檳榔園印度擬葉族群變動與氣象因子之關係…..….73
7-1.印度擬葉於屏東縣老埤檳榔及椰子園空間分布指數(S2/m)………76
7-2.印度擬葉於屏東縣麟洛檳榔及椰子園空間分布指數(S2/m)………77
7-3.印度擬葉於屏東縣新庄檳榔及椰子園空間分布指數(S2/m)………78
8. 印度擬葉在三個採樣區之直線迴歸分析圖……………………….79
表目錄
1-1.台灣地區椰子及檳榔之葉片、花穗及果實相調查表…………….19
1-2.各種類採集於椰子或檳榔之所在部位…………………………….20
2-1.印度擬葉飼育在椰子葉培養皿上於不同溫度下發育所需日數….45
2-2.印度擬葉飼育在檳榔葉培養皿上於不同溫度下發育所需日數….46
2-3.印度擬葉飼育在椰子苗之改良封閉飼養室中於不同溫度下發育所
需日數……………………………………………………………….…47
2-4.印度擬葉飼育在檳榔苗之改良封閉飼養室中於不同溫度下發育所
需日數………………………………………………………………….48
3-1.印度擬葉飼育在椰子葉-培養皿法於不同溫度下之繁殖力壽命及
發育總日數……………………………………………………………..52
3-2.印度擬葉飼育在檳榔葉-培養皿法於不同溫度下之繁殖力壽命及
發育總日數………………………………………………………………53
3-3.印度擬葉飼育在椰子苗之葉-改良封閉飼養室法於不同溫度下之
繁 殖力壽命及發育總日數……………………………………………54
3-4.印度擬葉飼育在檳榔苗之葉-改良封閉飼養室法於不同溫度下之
繁力壽命及發育總日數……………………………………………….55
4-1.印度擬葉飼養於椰子葉-培養皿上之發育零度及累積有效積溫.58
4-2.印度擬葉飼養於檳榔葉-培養皿上之發育零度及累積有效積溫………………………………………………………………………..59.
5. 印度擬葉飼養於椰子、檳榔葉-培養皿法及椰子、檳榔苗-改良封閉飼養室法於不同溫度處理下,其育成率的差異……………………62
6-1.印度擬葉對椰子及檳榔寄主之偏好性…………………………….81
6-2.印度擬葉對方位的選擇性………………………………………….81

1.朱耀沂、青木淳一. 1997.福山森林落葉層及腐質層之甲相.中華昆蟲.17: 172-177.
2.何琦琛、羅幹成.1979.溫度對二點葉Tetranychus urticae生活史及繁殖力之影響.中華農業研究. 28:261-271.
3.何琦琛.1988.台灣入侵害之簡介.中華昆蟲特刊第二號.果樹害蟲綜合防治研討會.p 155-166.
4.何琦琛. 1997.葉發生與氣象的關係探討.氣象因子與作物病蟲害發生研討會論文專輯. p 141-152.
5.何琦琛、羅幹成、陳文華. 1995.台灣為害經濟植物之葉種類及12種殺劑對二種主要葉之毒性測試.中華農業研究. 44: 157-165.
6.忻介六.1988.農業類學.農業出版社. p 47-56.
7.施劍鎣、謝忠能. 1978.兩點植食葉之生物特性、生命表及棲群內在增殖率. 植物保護學會會刊. 20: 321-329.
8.施劍鎣、黃淑明、謝忠能. 1979.神澤氏葉之生物特性、生命表及棲群內在增殖率植物保護學會會刊. 20: 181-191.
9.陳仁昭.1976. 台灣可可椰子新害蟲. 科學農業. 24: 481-485.
10.張弘毅、曾義雄. 1978.台灣南部地區熱帶果樹之捕植類調查.植物保護學會會刊.12: 338-345.
11.張弘毅. 1981.桑葉及其捕植類天敵之棲群生態.國立中興大學碩士論文. 98pp.
12.曾義雄. 1972 a.臺灣食糧類之發生情形及其檢索表.經濟
部商品檢驗局. 55 pp.
13.曾義雄. 1972b.臺灣產粉科之分類研究(壁蝨目:隱氣門亞目) 經濟部商品檢驗局台南分局.p8.
14.曾義雄. 1977a.台灣食葉性之種類及其分布情形研究 II擬葉科. 經濟部商品檢驗局台南分局印. 80 pp.
15.曾義雄. 1977b.台灣農業學上之類及其食性.六十六年暑期蟲害防治講習會專刊.台灣農業研究中心專刊第8號. P 1-8.
16.曾義雄、陳秋男. 1994.植物檢疫微小動物診斷.經濟部商品檢驗局新竹分局. p 208-265.
17.臺灣省政府農林廳. 1998.台灣農業年報.
18.羅幹成. 1978.臺灣葉類及防治方法對其天敵之影響.昆蟲生態與防治研討會講稿集. p 203-215.
19.羅幹成. 1989.葉之生態習性及防治策略.中華昆蟲特刊第三號 第一屆蜱研討會.3:203-215.
20. Block, W. 1980. Survival strategies in polar terrestrial arthropods. Biol. Jour. Linnean Soc. 14: 29-38.
21. Campbell, A., B. D. Frazer, N. Gibert, A. p. Gutierrez and M. Mackauer. 1974. Temperature requirements of some aphids and their parasites. Jour. Appl. Ecol. 11: 431-438.
22. Gabriel, B. P. 1976. Pest of coconut in the Philippines. Philippine Jour. Coconut Studies. p 15-26.
23. Haramoto, F.H. 1969. Biology and control of Brevipalpus phoenicis Geijskes (Acarina: Tenuipalpidae). Hawaii Agri. Exp. Sta. Uni. Hawaii. 68: 56-58.
24. Helle, W. and W.P.J. Overmeer. 1985 Spider mites their biology, natural enemies and control. World Crop Pest, 1A. p 331-335.
25. Howard, F. W. Abreu-Rodriguez, E. Denmark, H. A. 1990. Geographical and seasonal distribution of the coconut mite, Acaria guerreonis (Accra: Eriophyidae), Puerto Rico and Florida, USA. Jour. Agri. Univ. Puerto Rico, Agri. Expe. Sta. 74: 237-251.
26. Jeppson, L. R., H. H. Kegger. and E. W. Baker. 1975. Mites injurious to economic plants. Univ. California. Press. Berkeley, London. p 253-282.
27. Kang, S. M. 1981. Eriophyid and tarsonemid mites on coconut. Plant Prot. Bull. 29. p 79.
28. Lever, R. J. A. W. 1969. Pests of the coconut palm. FAO Plant Prot. Bull. p 42-143.
29. Lo, K. C. 1968a.Tetranychoid mites infesting fruit plants in Taiwan. Bull. Sun Yet-Sen Cult. Found. 2: 97-137.
30. Lo, K. C. 1968b.Tetranychoid mites infesting tea in Taiwan. Bull. Sun Yet-Sen Cult. Found. 1: 275-285.
31. Lo, K. C. 1968c. Tenuipalpid and tetranychid mites infesting citrus in Taiwan and life history study of the citrus green mite. Schizotetranychus baltazarae Rimando. Bull. Sun Yet-Sen Cult. Found. 1: 253-274.
32. Lo, K. C. 1969. Tetranychoid mites infesting special crops in Taiwan. Bull. Sun Yet-Sen Cult. Found. 4: 43-82.
33. Ludwig, J. A. and J. F. Reynolds. 1988. Statistical ecology. John Wiley & Sons, Inc. 337 pp.
34. Nagesha Chandra, B.K. and G.P.ChannaBasavanna.1974. Faunistic study of false spider mites (Acarina: Tenuipalpidae) of India. Proc. 4th Interna. Congress Acarology. p 77-183.
35. Nagesha Chandra, B. K. and G. P. ChannaBasavanna. 1984. Development and ecology of Raoiella indica Hirst (Acari: Tenuipalpidae) on coconut. Acarology VI. 2: 784-790.
36. Prasad, V. 1974. A Catalogue of mites of India. Indira Acarology Publishing House. p 111-218.
37. Petersen, H. and M. Luxton. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 39: 288-388.
38. Prichard, A. E. and E.W. Baker. 1951. The false spider mites of California. Univ. Calif. Pub. Entomol. 9: 1-94. Univ. Calif. Press, Berkeley and Los Angeles.
39. Prichard, L. A. 1958. The false spider mites. Univ. Caiv. Calif. Pub. Entomol. 14: 1-274. Univ. Calif. Press, Berkeley & Los Angeles.
40. Southwood, T. R. E. 1978. Ecological methods with particular reference to the study of insect populations. London: Chapman & Hall. 524 pp.
41. Steel, R. G. D. and J. H. Torrie. 1980. Principales and procedures of statistics biometrical approach. McGraw-Hill, Inc. p 233- 237.
42. SUS Institute. 1982. SUS User's guide: Statistics. SAS Institute, Cary, N. C. 1290pp.
43. Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189: 732-735.
44. Taylor, L. R. 1984. Assessing and interpreting the spatial distributions of insect populations. Ann. Rev. Entomol. 29: 321-357.
45. Tseng, Y. H. 1970. Survey and study on the mites of stored grain in Taiwan. Plant Prot. Bull. 12: 113-123.
46. Tseng, Y. H. 1971. A Field survey of the mites infesting stored sugar in Taiwan. Plant Prot. Bull. 13: 147-155.
47. Tseng, Y. H. 1976 a. Two new erythraeid mites from Taiwan (Acarina: Prostigmata). Taiwan Sugar Res. Inst. 7: 63-74.
48. Tseng, Y. H. 1976 b. Systematics of the mite family Phytoseiidae from Taiwan, with a revised key to genera of the world (II). Jour. Agri. Assoc. China New Series No. 94. p 85-137.
49. Tseng, Y. H. 1977. A contribution to the knowledge of formosan cheyletid mites (Acarina: Prostigmata). Proc. Nation. Sci. Council. p 1-51.
50. Tseng, Y. H. 1978. Mites of the family Bdellidae from Taiwan (Acarina:Prostigmata). Jour. Agri. Associ. China New Series No. 104. p 25-51.
51. Tseng, Y. H. 1980. Taxonomical study of the mite family Cunaxidae from Taiwan (Acarina: Tromoidiformes). Quart. Jour. Taiwan Museum. 33: 253-277.
52. Tseng, Y. H. Further study on phytoseiid mites from Taiwan. (Acarina:Mesostigmata). 1983. Chinese Jour. Entomol. 3: 33-74.
53. Tseng, Y. H. 1985. A taxonomic study of the Tydidae from Taiwan (Acarina: Trombidiformes) (Part II). Jour. Taiwan Museum. 38: 65-93.
54. Tseng, Y. H. 1990. A monograph of the mite family Tetranychidae (Acarina: Trombidiformes) from Taiwan. Taiwan Museum Special Publication Series Number 9. 222 pp.
55. Vankirk, J. R. and M. T. Aliniazee. 1981. Determining low temperature threshold for pupal development of the western cherry fruit fly for use in phenology models. Environ. Entomol. 10: 968-971.
56 van Emden , H. F. 1972. Aphid technology. Academic Press, London and New York. 344 pp.
57. Vrie, M. Van de, J. A. McMurtry. and C. B. Huffaker. 1972. Biology ecology, and pest status, and host-plant relations of Tetranychids. Hilgardia. 41: 343-432.
58. Wallwork, J. A. 1972. Distribution patterns and population dynamics of the micro-arthropods of a desert soil in southern California. Jour. Anim. Ecol. 41: 291-310.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top