跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/01 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家泰
研究生(外文):C. T. Chen
論文名稱:研究使用於微機電用途之噴嘴薄板
論文名稱(外文):A study on Metallic nozzle plate used in Micro-Electro-Mechanical Applications
指導教授:張一熙
指導教授(外文):Y.S. Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:81
中文關鍵詞:微機電製程電鑄製程黃光製程光阻罩幕電流密度機械性質
外文關鍵詞:micro-electro-mechanical processelectroforming processlithography processphotoresist patterncurrent densitymechanical property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LIGA技術為一深具潛力及希望之微機械製造技術,對於需要複雜形狀、高深寬比及量產之微結構元件,有非常高的商業應用價值。LIGA技術於1970年代起源於德國Karlsruhe Nuclear Research Center。LIGA是一德文之縮寫,其製程包含微影製程(Lithographie)、電鑄製程(Galvanoformung)、模鑄製程(Abformung)。由此技術製造出之微結構可應用在許多不同之領域。此篇論文將介紹有關LIGA技術的製造原理及其製程,並利用此技術原理製造出可應用於微機電用途上之金屬噴嘴薄板(nozzle plate)。
在LIGA製程中,以不鏽鋼片或其它材料為基材,在黃光製程中經由光阻的塗佈及曝光、顯影等步驟,形成特殊之罩幕,然後加以電鑄,在導電基材上將形成我們所需要特定外型之金屬微結構,接著再經由去除光阻、金屬微結構脫離母模等步驟,便可得到所需要之金屬微結構。此實驗欲討論以不同光阻罩幕進行電鑄時所得到之不同噴嘴形狀,以及電鑄層厚度與電流密度及時間之關係,並探討電鑄層在光阻罩幕的阻擋下,金屬微結構成型的過程,以利實際上之應用。

The LIGA technology is a potential fabrication technology of micro machining with a high commercial value in complicated shapes, high aspect ratios and mass production applications. Development of the LIGA process began at the Karlsruhe Nuclear Research Center, West Germany in the late 1970s. “LIGA” is a German abbreviation of three major process steps: lithography (Lithographie), electroforming (Galvanoformung), and moulding (Abformung). Micro-devices produced by electroforming processes possess a variety of applications in different fields. This thesis will introduce the principles and processes of the LIGA technology, and will investigate how to manufacture metallic nozzle plates used in the micro-electro-mechanical system (MEMS) by this promising technology.
In the LIGA process, stainless steel or other materials such as ceramics, metals, plastics, or a combination of these materials could be used as the substrate. Specific geometrical photoresist patterns are created on the substrate by the lithography processes. The electroforming process is then proceeded consequently such that the metallic micro-scale structure with specific outline could be obtained on the conductive substrate. This experiment would produce different shape metallic micro-scale structures desired by different photoresist patterns; find the relation between the thickness of the electroforming layer and the time in various current densities (ASD). Moreover, the growth mechanism of the metallic micro-scale structure during the electroforming process was also discussed.

ABSTRACT.............................1
ACKNOWLEDGE............................2
CONTENT..............................3
FIGURES CAPTION.........................5
TABLES CAPTION..........................9
CHAPTER 1 INTRODUCTION.....................11
§1-1 Preface........................11
§1-2 Introduction of LIGA Process.............12
§1-3 Introduction of LIGA-Like Process..........14
§1-4 Electroforming Technology..............15
§1-5 Metallic Micro-Structure Properties.........17
CHAPTER 2 Experimental Methods and Steps...........20
§2-1 The Experimental Methods...............20
§2-2 The Experimental Steps................21
§2-2-1 Solid Dry Film Patterns.............21
§2-2-2 Liquid Photoresist Patterns.......... 29
§2-2-3 Solid Dry Film and Liquid Photoresist
Double Layer Patterns..............30
§2-2-4 The Formation of the Metallic Micro-Structure.31
CHAPTER 3 The Experiment Results and Discussion.......38
§3-1 Electroforming on Solid Dry Film Patterns......38
§3-2 Electroforming on Liquid Photoresist Patterns....38
§3-3 Electroforming on Solid Dry Film and Liquid
Photoresist Double Layer Patterns..........34
§3-4 The Formation of the Electroforming Layer......35
§3-4-1 The Growth of the Electroforming Layer in the
Vertical Direction................35
§3-4-2 The Growth of the Electroforming Layer in the
Horizontal Direction...............36
§3-4-3 Radius of Curvature (ROC ) Values of the
Nozzle......................37
§3-4-4 ROC Values of the Nozzle in Unit
Thickness of the Electroforming Layer..... 38
CHAPTER 4 CONCLUSION......................40
REFERENCE............................41
FIGURES CAPTION
Fig. 1-1、The LIGA Process ..................43
Fig. 1-2、The Applications of the Electroforming Technology.44
Fig. 1-3、The Influence of the Pattern Geometric Shape on the
Electroforming Layer.................44
Fig. 2-1、The Geometric Shape of the Solid Dry Film Patterns. 45
Fig. 2-2、The Geometric Shape of the LiquidPhotoresist
Patterns.......................46
Fig. 2-3、The Geometric Shape of the Solid Dry Film and the
Liquid Photoresist Two-Layer Patterns........47
Fig. 3-1、Electroforming on the Solid Dry Film Patterns...48
Fig. 3-2、Electroforming on the Liquid Photoresist Pattern..50
Fig. 3-3、Electroforming on the Solid Dry film and the Liquid
Photoresist Two-Layer Patterns...........52
Fig. 3-4、The Relation between the Growth Distance in the
Vertical Direction of the Electroforming Layer and
Time in Five Different Current Density Values...54
Fig. 3-5、The Relation between the Growth Distance in the
Horizontal Direction of the Electroforming Layer
and Time in Five Different Current Density Values.55
Fig. 3-6、The Growth Rates in the Vertical and Horizontal
Direction of the Electroforming Layer in Five
Different Current Density values..........56
Fig. 3-7、The Relation between the ROC Values of the Electro-
forming Layer and Time in 3.44 ASD.........57
Fig. 3-8、The Relation between the ROC Values of the Electro-
forming Layer and Time in 5.18 ASD.........58
Fig. 3-9、The Relation between the ROC Values of the Electro-
forming Layer and Time in 6.89 ASD.........59
Fig.3-10、The Relation between the ROC Values of the
Electroforming Layer and Time in 10.33 ASD.....60
Fig.3-11、The Relation between the ROC Values of the Electro-
forming Layer and Time in 13.78 ASD.........61
Fig.3-12、The Relation between the ROC 1 Values of the Electro-
forming Layer and Time in Five Different Current
Density Values....................62
Fig.3-13、The Relation between the ROC 2 Values of the Electro-
forming Layer and Time in Different Current
Density Values....................63
Fig.3-14、The Relation between the ROC 3 Values of the Electro-
forming Layer and Time in Five Different Current
Density Values....................64
Fig.3-15、The Relation between the ROC Values in Unit Thick-
ness of the Electroforming Layer and Time in
3.44 ASD.......................65
Fig.3-16、The Relation between the ROC Values in Unit Thick-
ness of the Electroforming Layer and Time in
5.18 ASD.......................66
Fig.3-17、The Relation between the ROC Values in Unit Thick-
ness of the Electroforming Layer and Time in
6.89 ASD.......................67
Fig.3-18、The Relation between the ROC Values in Unit Thick-
ness of the Electroforming Layer and Time in
10.33 ASD.......................68
Fig.3-19、The Relation between the ROC Values in Unit Thick-
ness of the Electroforming Layer and Time in
13.78 ASD.......................69
Fig.3-20、The Relation between the ROC 1 Values in Unit Thick-
ness of the Electroforming Layer and Time in
Five Different Current Density Values........70
Fig.3-21、The Relation between the ROC 2 Values in Unit Thick-
ness of the Electroforming Layer and Time in
Five Different Current Density Values........71
Fig.3-22、The Relation between the ROC 3 Values in Unit Thick-
ness of the Electroforming Layer and Time in
Five Different Current Density Values........72
TABLES CAPTION
Tab. 1-1、Comparison of Several Photolithography Technologies.73
Tab. 3-1、Data of the Relation between the Growth Distance in
the Vertical Direction of the Electroforming Layer
and Time in Five Different Current Density Values.74
Tab. 3-2、Data of the Relation between the Growth Distance in
the Horizontal Direction of the Electroforming Layer
and Time in Five Different Current Density Values.75
Tab. 3-3、Data of the Relation between the ROC Values of the
Nozzle and Time in 3.44 ASD.............76
Tab. 3-4、Data of the Relation between the ROC Values of the
Nozzle and Time in 5.18 ASD.............76
Tab. 3-5、Data of the Relation between the ROC Values of the
Nozzle and Time in 6.89 ASD.............77
Tab. 3-6、Data of the Relation between the ROC Values of the
Nozzle and Time in 10.33 ASD............77
Tab. 3-7、Data of the Relation between the ROC Values of the
Nozzle and Time in 13.78 ASD............78
Tab. 3-8、Data of the Relation between the ROC Values in Unit
Thickness of the Electroforming Layer and Time
in 3.44 ASD......................79
Tab. 3-9、Data of the Relation between the ROC Values in Unit
Thickness of the Electroforming Layer and Time
in 5.18 ASD......................79
Tab.3-10、Data of the Relation between the ROC Values in Unit
Thickness of the Electroforming Layer and Time
in 6.89 ASD......................80
Tab.3-11、Data of the Relation between the ROC Values in Unit
Thickness of the Electroforming Layer and Time
in 10.33 ASD.....................80
Tab.3-12、Data of the Relation between the ROC Values in Unit
Thickness of the Electroforming Layer and Time
in 13.78 ASD.....................81

1、V. Sangishetty, Y. M. Desta, Z.Ling, M. Murphy, K. Kelly,
Proc.1995 Workshop on Science and Technology at CAMD,
Baton Rouge.
2、”Modern Electroplating”, ed. F. Lowenstein, John Wileyand
Sons,NY, 1963, 2nd Ed., Chap.12.
3、A. M. Sheik and U. Erb, Journal of Material Science, inpress.
4、T. R. Beck, This Journal, 129, 2412 (1982).
5、U. S. Patent 4,719,436.
6、C. Kollia. Z. Loizos. N. Spyrellis. Surf. Coat. Technol.45
(1991) 155.
7、S. Abel. H. Freimuth. H. Mensiger. J. Micrometh. Microengng
4 (1994) 47.
8、U. S. Patent 5,167,776.
9、N. Ibl. Surf. Coat. Technol. 10 (1980) 81.
10、M. J. Cai. W. B. Lee. Mater. Processing Technol. 48 (1995)
51.
11、A. M. T. van der Putten and J. W. G. de Bakker, J.
electrochem.Soc.140, 2221 (1993).
12、E. W. Becker et al., Naturwissenschaften, 69, 520 (1982).
13、R. C. Barrent Proc. AES An. Conf., 41, 169 (1954).
14、R. J. Kendrick, Trans. Inst. Met. Fin., 42, 235 (1964).
15、U. S. Patent 2,369,620.
16、Pinner and Baker, Trans. Electrochem. Soc., 77, 353.
17、Swiss Federal Institude of Technology, Lausanne. Patent
penting. No. FR 96, 16131 (1996).
18、U. S. Patent 4,675,083.
19、W. Paatsch. Plating Surf. Finishing 75 (1988) 52.
20、E. C. Harvey, P. T. Rumsby, M. C. Gower and J. L. Remnant,
SPIE,2639, 266 (1995).
21、周敏傑,LIGA 製程技術發展現況,機械工業雜誌,元月,131
(1996)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top