跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭遠清
研究生(外文):Yuan Ching Peng
論文名稱:氮化鈦薄膜在超大型積體電路製程上之應用
論文名稱(外文):The Applications of TiN Thin Films in ULSI Technologies
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Lih Juann Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:169
中文關鍵詞:氮化鈦物理氣相蒸鍍化學氣相蒸鍍防擴散層黏著層優選成長方向防反射層
外文關鍵詞:TiNPhysical Vapor DepositionChemical Vapor DepositionDiffusion BarrierAdhesion LayerPreferred Growth OrientationAnti-Reflection CoatingAg
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究針對氮化鈦薄膜於半導體元件之應用做完整深入之研究,計畫中以物理氣相蒸鍍及化學氣相蒸鍍氮化鈦。配合多項分析儀器,如TEM、XRD, four point resistance measurement, SEM、AES、EDS對氮化鈦薄膜之結構;研究其作為防擴散層、黏著層等之特性; 各種不同鍍膜方式之結構以及其與TiSi2、CVD-W等之接面做深入探討。
研究發現100 nm厚的氮化鈦薄膜在 (001) Si 上呈柱狀成長,而且會有沿晶破裂的情形發生。成長氮化鈦薄膜過程中,因各成長方向之應力不同,氮化鈦薄膜會沿一最小能量方向成長。在成長初期表面能為主要控制變因,故 TiN 會沿表面能量最小之平面方向成長;即 (001)TiN 優選成長方向,當膜厚不斷增加時,應變能之效應會隨之增加,所以氮化鈦薄膜會沿應變能最低之平面方向成長;即 (111)TiN 方向。而對以準直管物理氣相蒸鍍、化學氣相蒸鍍之氮化鈦薄膜其優選成長方向為(001)TiN。
研究CVD-W 與 各種不同性質氮化鈦接面結構之探討發現在不同優選成長方向之氮化鈦薄膜上 CVD-W 結構會有明顯之不同。在(111)TiN上之CVD-W成長方向為(110)W,在(100)TiN上之CVD-W成長方向為(100)W。
TiN 薄膜在半導體元件中除做為防擴散層外,亦常用於防止 Al-Cu-Si 金屬接線在微影曝光時會散射光源,造成曝光尺寸錯誤,即防反射層。但在蒸鍍鋁薄膜後, Al-Cu-Si 中的矽會因過飽和而析出於鋁合金之晶界,造成 Al-Cu-Si 的表面不平整,使氮化鈦蒸鍍上後覆蓋不全。在後續的顯影過程中顯影液會沿這些覆蓋不全處滲入鋁合金,進而侵蝕鋁合金。
研究以氮化鈦中間層做為 C-54 TiSi2 形成之孕核層,希望能藉此降低 C-54 TiSi2 反應之溫度,並在未來小尺寸元件能應用,以達到穩定 C-54-TiSi2 避免尺寸效應之影響。研究結果發現氮化鈦中間層能達到降低 C-54 TiSi2 生成溫度約 50 ~ 100 度. 其反應機制是氮化鈦中間層提供了 C-49 TiSi2 較多的孕核點,與無TiN 中間層的試片比較其 C-49 TiSi2 的晶粒較小,而 C-49 轉換至 C-54 TiSi2 的過程中,C-54TiSi2常在C-49之晶界產生,因此較小的C-49 晶粒 亦提供了C-54 TiSi2較多的孕核點,故其轉換溫度得以降低.
研究針對銀薄膜作為下一世代 接線材料之應用做深入探討。發現以一極薄(~3 nm)金或鈦薄膜蒸鍍於銀與氮化鈦中間可有效改善銀之熱穩定性,提高350OC以上。
Abstract
The growth orientations of the TiN adhesion layers were controlled by deposition method and film thickness. Preferred growth orientation of conventional PVD deposited TiN thin films was found to vary with the film thickness. For thin film samples (10-50 nm), preferred [100] TiN growth is attributed to the possession of the lowest surface energy among all crystal planes. As the film thickness was increased, the strain energy becomes the dominant factor and leads to preferred [111] TiN growth. For the collimated PVD deposited TiN, only the [100]TiN preferred growth was found. The high power process during collimated PVD deposition is thought to result in the large grain TiN structure, which in turn, impedes the change of preferred orientation. For the as-deposited MOCVD TiN film, the crystal structure was found to be amorphous because of the high carbon contamination in the sample. The carbon contamination was reduced by intermittent in-situ plasma treatment. The preferred growth orientation of the plasma treated MOCVD TiN film was [100]TiN, which is attributed to the relief of stress during the plasma treatment and the surface energy factor is dominating the film growth.
The structure and electrical properties of chemical vapor deposited W (CVD-W) films on various physical vapor deposited or metal-organic chemical vapor deposited TiN ( PVD or MOCVD TiN) films have been investigated. The growth orientations of the TiN adhesion layers were controlled by deposition method and film thickness. The growth orientations of CVD-W films were found to depend strongly on the microstructures of TiN. The grain size and electrical resistivity of CVD-W were found to increase and decrease, respectively, with the grain sizesof underlying TiN layers.
The alleviation of cracking of TiN-ARC layer on Al-Cu and Al-Cu-Si films after development process has been achieved. For the TiN-ARC/Al-Cu system, the stress induced defects were reduced with the increase in TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling induced poor coverage of high aspect ratio holes. As a result, the photoresist developer penetrated through the films. CVD deposition of TiN-ARC or the predeposition of Ti interposing layer was used to eliminate the formation of Si nodules.
An ultra thin TiN seed layer was used to reduce the transformation temperature of C-49 to C-54 TiSi2. The fine-grained structure of C-49 TiSi2 was induced by the TiN interposing layer. Since C-54 TiSi2 nucleated more easily in the fine-grained C-49 structure, the phase transformation temperature was reduced as a result.
Morphological stability of Ag thin film on both Si substrate and TiN layer with a thin interposing metal layer has been investigated. Owing to the formation of Ag spikes at the Ag/Si interface, a diffusion barrier is needed to buffer the interdiffusion of Ag with Si. TiN films deposited by physical vapor deposition (PVD) or metalorganic chemical vapor deposition (MOCVD) were used. Au or Ti (~3 nm) layer was used as the glue layer between Ag and TiN. In Ag/Au/TiN system, mixed Ag-Au layer is stable on PVD-TiN at a temperature as high as 450 ℃. In Ag/Ti/TiN systems, the thermal stability of Ag on CVD-TiN is superior to that on PVD-TiN. Ag layers were found to be discontinuous after annealing at 300 ℃ and 350 ℃ on PVD-TiN and CVD-TiN systems, respectively.
Cover
摘要
Acknowledgements
感謝
Abstract
Contents
Chaptet 1 Overview of Interconnect Technologies
1-1 Introduction
1-2 Metal Silicides
1-3 Polycrystalline WSi
1-4 Al Process
1-5 W Process
1-6 Cu Metallization
1-7 Other Future Metallization Systems
Chapter 2 The Applications TiN Thin Films in ULSI Technology
2-1 Fundamentals of TiN
2-2 Diffusion Barrier Layer
2-3 Adhesion and Wetting Layer
2-4 Anti-reflection Coating (ARC) Layer
2-5 TiN Capping Layer
2-6 Deposition Methods of TiN
Chapter 3 Materials Issues in ULSI Structure
3-1 Rapid Thermal Procesing
3-2 RC Delay in Miniaturization of Interconnect Feature Sizes
3-3 Electromigration Resistance
3-4 Adhesion
3-5 Corrosion of Metal During Etching
3-6 Diffusion Barrier
Chapter 4 Experimental Procedures
4-1 Initial Wafer Cleaning
4-2 Thin Metal Film Diposition
4-3 Thermal Annealing
4-4 Transmission Electron Microscope Observation
4-5 Scanning Electron Microscope Observation
4-6 Composition-Depth Profiling Analysis by Auger Electron Spectroscopy
4-7 X-ray Diffractometry
4-8 Sheet Resistance Measurement
Chapter 5 Structural and Electrical Properties of PVD and MOCVD TiN Thin Films
5-1 Introduction
5-2 Experimental Procedures
5-3 Results and Discussion
Chapter 6 Structural and Electrical Properties of CVD-W Overgrowth on PVD and MOCVD TiN Adhesion Layers
6-1 Introduction
6-2 Experimental Procedures
6-3 Results and Discussion
Chapter 7 Alleviation of Process-Induced Cracking of the Antireflection TiN Coating (ARC-TiN) in Al-Cu and Al-Cu-Si Films
7-1 Introduction
7-2 Experimental Procedure
7-3 Results and Discussion
Chapter 8 Enhancement of C-49 to C-54 TiSi Phase Transformation on (001)Si with an Ultrathin TiN Seed Layer
8-1 Introduction
8-2 Experimental Procedures
8-3 Results and Discussion
Chapter 9 Ag Metallization and Imprvement of Morphological Stability of Ag Thin Film on TiN Layer
9-1 Introduction
9-2 Experiments Procedures
9-3 Results and Discussion
Chapter 10 Summary and Conclusions
10-1 Structural and Electrical Properties of PVD and MOCVD TiN Thin Films
10-2 Structural and Electrical Properties of CVD-W Overgrowth on PVD and MOCVD TiN Adhesion Layers
10-3 The Alleviation on Process Induced Cracking of Antireflection Coating TiN (ARC-Tin) in Al-Cu and Al-Cu-Si Films
10-4 Enhancement of C-49 to C-54 TiSiPhase Transformation on (001)Si with an Ultrathin Tin seed layer
10-5 Study of TiN/TiSion Silicon in Different Thermal Cycles
10-6 Improvement of the Morphological Stability of Ag Thin Films on TiN
Chapter 11 Future Prospects
11-1 Ultrsthin Diffusion Barrier Layer for Al interconnect
11-2 Diffusion Barrier Layer for Cu interconnect
11-3TiN Capping for Silicides Formation
11-4 Ag and Au Metallization
References
Figure Captions:
Figes
References
Chapter 1
[1.1] J. D. Meindl, " Interconnection Limits on Silicon Ultra Large Scale Integration ", J. of Electrochem. Soc. 133 (1986) c99-c99.
[1.2] A. K. Sinha, " Interconnects and Contacts for VLSI Applications ", Mater. Res. Soc. Symp. Proc. 54 (1985) 735-745.
[1.3] J. K. Hassan and H. G. Sarkary, " Lithography for VLSI: an Overview ", Solid State Technology 25-May (1982) 49-54.
[1.4] J. F. Marshall, " New Applications of Tape Bonding for High Lead Count Device s", Solid State Technology 27-Auguest (1984) 175-179.
[1.5] B. Hoeneisen and C.A. Mead, " Fundamental Limitations in Microelectronics-I MOS Technology ", Solid State Electronics 15 (1972) 819-829.
[1.6] E. C. Douglas, " Advanced Process Technology for VLSI Circuits ", Solid State Technology 24-May (1981) 65-72.
[1.7] The National Technology Roadmap for Semiconductor, (Semiconductor Industry Association, 1997)
[1.8] O. McCaldin and H. Sankur, " Precipitation of Si from the Al Metallization of Intergrated Circuits " Appl. Phys. Lett. 20 (1972) 171-172.
[1.9] J. H. Lin, Ph. D. Thesis, National Tsing Hua University, 1995.
[1.10] S. P. Murarka, " Silicides for VLSI Applications ", (Academic Press, Orlando, Florida, 1983).
[1.11] B. Roberts, A. Harrus, R. L. Jackson, " Interconnect Metallization for Future Device Generations ", Solid State Technology 38-Feb. (1995) 69-74.
[1.12] S. P. Muraka, " Metallization:Theory and Practice for VLSI and ULSI ", (Butterworth-Heinemann, Boston, 1993).
[1.13] C. Y. Chang and S. M. Sze, " ULSI Technology ", (McGraw-Hill, NewYork, 1996).
[1.14] M. Wittmer and H. Melchior, " Applications of TiN Thin Films in Silicon Device Technology ", Thin Solid Films 93 (1982) 397-405.
[1.15] J. W. Mayer and S. S. Lau, " Electronic Materials Science: For Integrated Circuits in Si and GaAs ", (McGraw-Hill, New York, 1990).
[1.16] B. C. Crowder and S. Zirinsky, " 1 mm MOSFET VLSI Technology: Part VII - Metal Silicide Interconnection Technology - A Future Perspective ", IEEE Trans. Electron Device ED-26 (1979) 369-371.
[1.17] A. K. Sinha, D. B. Fraser, E. N. Fuls, W. S. Lindenberger, and, S. P. Muraka, " MOS Compatibility of High-Conductivity TaSi2/n+ Poly-Si Gates ", IEEE Trans. Electron Device ED-27 (1980) 1425-1430.
[1.18] P. B. Ghate, " Aluminum Alloy Metallization for Integrated Circuits ", Thin Solid Films 83 (1981) 195-205.
[1.19] J. M. Poate, K. N. Tu, and J. W. Mayer, " Electromigration in Thin Films Interdiffusion and Reactions ", (Wiley, New York, 1978).
[1.20] Y. C. Peng, L. J. Chen, Y. R. Yang, W. Y. Hsieh, and Y. F. Hsieh, " The Alleviation of Process Induced Cracking of Antireflection Coating TiN (ARC-TiN) in Al-Cu and Al-Cu-Si Films ", J. Korean Phys. Soc. (in press, 1999).
[1.21] A. Kamgar, A. Knoell, F. A. Baiocchi, K. J. Orlowsky, K. P. Cheung, and R. Liu, " Impact of Al Melting on Diode Integrity ", Proc. 6th IEEE VLSI Multilevel Interconnection Conference (1989) 190-192.
[1.22] M. Inoue, K. Hashizume, H. Tsuchikawa, " The Properties of Aluminum Thin Films Sputter Deposited at Elevated Temperature ", J. Vac. Sci. Technol. A6 (1988) 1636-1639.
[1.23] T. Takeyasu, Y. Kawano, E. Kondoh, T. Katagiri, H. Yamamoto, H. Shinriki, and H. Yamamoto, T. Ohta, " Characterization of Direct-Contact via Plug Formed by Using Selective Al Chemical Vapor Deposition ", Jpn. J. Appl. Phys. 33 (1994) 424-428.
[1.24] K. Fujii, R. T. Tung, D. J. Eaglesham, K. Kikuta, and T. Kikkawa, " Phase Transformation of Titanium Disilicide Induces by High- Temperature Sputtering ", Mater. Res. Soc. Symp. Proc. 402 (1996) 83-88.
[1.25] J. E. J. Schmitz, " Chemical Vapor Deposition of Tungsten and Tungsten Silicide for VLSI/ULSI Applications ", (Noyes Publications, New Jersey, 1992).
[1.26] C. W. Borgmann, C. P. Larrabee, W. O. Binder, H. L. Burghoff and E. H. Dix Jr., " Corrosion of Metals " (Am. Soc. Metals, Cleveland, 1946).
[1.27] P. E. Riley, T. E. Clark, " Integrated Chemical Vapor-Deposition and Plasma Etchback of Tungsten in a Multichamber, Single-Wafer System ", J. Electrochem. Soc. 138 (1991) 3008-3011.
[1.28] Y. Pauleau, " Chemical Vapor Deposition of Tungsten Films for Metallization of Integrated Circuit ", Thin Solid Films 122 (1984) 243-258.
[1.29] E. K. Broadbent and C. L. Ramiller, " Selective Low Pressure Chemical Vapor Deposition of Tungsten ", J. Electrochem. Soc. 131 (1984) 1427-1433.
[1.30] M. Hoshino, H. Suehiro, K. Kasai and J. Komeno, " Chemical-Mechanical Polishing of Metalorganic Chemical Vapor Deposited Gold for LSI Interconnection ", Jpn. J. Appl. Phys. 32 (1993) L392-L394.
[1.31] A. Magro-Campero, " Simple Estimate of Electromigration Failure in Metallic Thin Films ", J. Appl. Phys. 53 (1982) 1224-1225.
[1.32] Y. C. Peng, C. R. Chen, and L. J. Chen, " Improvement of Morphological Stability of Ag/Si Interface with an Interposing Au Layer" , J. Mater. Res. 13 (1998) 90-93.
Chapter 2
[2.1] L. E. Toth, " Transition Metal Carbides and Nitrides ", (Academic, NewYork, 1971).
[2.2] J. M. Molarius, A. S. Korhonen, and E. O. Ristolainen, " Ti-N Phases Formed by Reactive Ion Plating ", J. Vac. Sci. Technol., A3 (1985) 2419-2425.
[2.3] J. W. Mayer and S. S. Lau, " Electronic Materials Science: For Integrated Circuits in Si and GaAs ", (McGraw-Hill, New York, 1990).
[2.4] N. G. Einspruch and G. R. Larrabee, " Materials Process and Characterization ", (Academic, New York, 1983).
[2.5] M. Wittmer, " Barrier Layers: Principles and Applications in Microelectronics ", J. Vac. Sci. Technol. A2 (1984) 273-280.
[2.6] C. Y. Ting and M. Wittmer, " The Use of Titanium-Based Contact Barrier Layers in Si Technology ", Thin Solid Films 96 (1982) 327-345.
[2.7] M. Wittmer, " Properties and Microelectronic Applications of Thin Films of Refractory Metal Nitrides ", J. Vac. Sci. Technol. A-3 (1985) 1797-1803.
[2.8] J. E. J. Schmitz, " Chemical Vapor Deposition of Tungsten and Tungsten Silicide for VLSI/ULSI Applications ", (Noyes Publications, New Jersey, 1992).
[2.9] E. S. Kim, C. M. Lee, J. G. Lee, and H. B. Im, " Studies on the Nucleation and Growth of Chemical Vapor Deposited W on TiN Substrates ", Mater. Sci. and Engng. B17 (1993) 137-142.
[2.10] S. Kumar, D. R. Chopra, and G. C. Smith, " Characterization of Chemical Vapor Deposited W on Low-Pressure Chemically Deposited and Reactively Sputtered TiN films ", J. Vac. Technol. B 11 (1993) 1815-1818.
[2.11] S. C. Chen, A. Sakamoto, H. Tamura, M. Yoshimaru, and M. Ino, " Applicability of TiN Adhesion Layer Formed by Nitridation of Sputtered Ti Film to Blanket CVD-W contact Filling ", Jpn. J. Appl. Phys. 32 (1993) 1929-1933.
[2.12] E. G. Golgan, S. Greco, N. Greco, and J. F. White, " Formation Mechanism of Ring Defects During Metal RIE ", Proc. of VMIC Conf. (1994) 284-286.
[2.13] Y. C. Peng, L. J. Chen, Y. R. Yang, W. Y. Hsieh, and Y. F. Hsieh, " The Alleviation of Process Induced Cracking of Antireflection Coating TiN (ARC-TiN) in Al-Cu and Al-Cu-Si Films ", J. Korean Phys. Soc. (in press, 1999).
[2.14] Q. Xu and C. M. Hu, " New Ti-SALICIDE Process Using Sb and Ge Preamorphization for Sub-0.2 mm CMOS Technology ", IEEE Trans. Electron Device ED-45 (1998) 2002 -2009.
[2.15] S. M. Rossnagel, D. Mikalsen, H. Kinoshita, J. J. Cuomo, " Collimated Magnetron Sputter Deposition ", J. Vac. Sci. Technol. A-9 (1991) 261-265.
[2.16] M. Biberger, S. Jackson, G. Tkach, J. Schlueter, B. Jones, C. K. Huang, and L. Ouellet, " Collimated Ti/TiN Contact and Barrier Layers for Sub 0.5 mm CVD W Filled Holes ", Thin Solid Films 270 (1995) 522-525.
[2.17] S. M. Rossnagel, " Directional and Ionized Physical Vapor-Deposition for Microelectronics Applications ", J. Vac. Sci. Technol. B-16 (1998) 2585-2608.
[2.18] J. Hopwood, " Ionized Physical Vapor-Deposition of Integrated-Circuit Interconnects ", Physics of Plasmas 5 (1998) 1624-1631.
[2.19] F. Cerio, J. Drewery, E. Huang, G. Reynolds, " Film Properties of Ti/TiN Bilayers Deposited Sequentially by Ionized Physical Vapor-Deposition ", J. Vac. Sci. Technol. A-16 (1998) 1863-1867.
[2.20] K. Ishihara, K. Yamazaki, H. Hamada, K. Kamisako, and Y. Tarui, " Characterization of CVD TiN Films Prepared with Metal-Organic Source ", Jpn, J. Appl. Phys. 29 (1990) 2103-2105.
[2.21] I. J. Raaijmakers, " Low-Temperature Metal-Organic CVD of Advanced Barrier Layer for Microelectronics Industry ", Thin Solid Films 247 (1994) 85-93.
[2.22] S. R. Kurtz, and R. G. Gordon, " Chemical Vapor Deposition of Titanium Nitride at Low Temperature ", Thin Solid Films 140 (1986) 277-290.
[2.23] N. Yokoyama, K. Hinode, and Y. Homma, " LPCVD Titanium Nitride for ULSIs ", J. Electrochem. Soc. 138 (1991) 190-195.
Chapter 3
[3.1] K. G. Reid, A. R. Sitaram, " Rapid Thermal Processing for ULSI Applications: An Overview " Solid State Technology 39-Feb (1996) 63-72.
[3.2] A. K. Sinha, J. A. Cooper, and H. J. Leevinstein, " Speed Limitation Due to Interconnect Time Constants in VLSI Integrated Circuits ", IEEE Electron Devices Lett. EDL-3 (1982) 90-92.
[3.3] S. Bothra, B. Rogers, M. Kellam, and C. M. Osburn " Analysis of the Effects of Scaling on Interconnect Delay in ULSI Circuit ", IEEE Trans. Electron Devices, ED-40 (1993) 591-597.
[3.4] A. K. Sinha, " Refractory Metal Silicides for VLSI Applications ", J. Vac. Sci. Technol. 19 (1981) 778-785.
[3.5] K. C. Saraswat and F. Mohammadi, " Effect of Scaling of Interconnections on the Time Delay of VLSI Circuit ", IEEE Trans. Electron Devices ED-29 (1982) 645-650.
[3.6] T. Sakurai, " Closed-Formed Expressions for Interconnection Delay, Coupling, and Crosstalk in VLSI''s ", IEEE Trans. Electron Devices ED-40 (1993) 118-124.
[3.7] P. B. Ghate, " Electromigration-Induced Failures in VLSI Interconnects ", Solid State Technology 26 (1983) 113-120.
[3.8] P. M. Deurle and P.S. Ho, in " Thin Films-Interdiffusion and Reactions " (J.M. Poate, K.N. Tu, and J.W. Mayer, eds), (Wiley, New York, 1963).
[3.9] A. Magro-Campero, " Simple Estimate of Eleetromigration Failure in Metallic Thin Films ", J. Appl. Phys. 53 (1982) 1224-1225.
[3.10] P. G. Shewmon, " Diffusion in Solids " (McGraw-Hill, New York, 1963) 65.
[3.11] R. C. Weast, " Handbook of Chemistry and Physics ", 55th edition, (CRC, Cleveland, 1974-1975)
[3.12] S. P. Murarka, " Metallization Theory and Practice for VLSI and ULSI ", (Butterworth-Heinemann, USA, 1993)
[3.13] B. Roberts, A. Harrus, R. L. Jackson, " Interconnect Metallization for Future Device Generations ", Solid State Technology 38-Feb. (1995) 69-74.
Chapter 5
[5.1] J. W. Mayer and S. S. Lau, " Electronic Materials Science: For Integrated Circuits in Si and GaAs ", (McGraw-Hill, New York, 1990).
[5.2] N. G. Einspruch and G. R. Larrabee, " Materials Process and Characterization ", (Academic, New York, 1983).
[5.3] M. Wittmer, " Barrier Layers: Principles and Applications in Microelectronics ", J. Vac. Sci. Technol. A2 (1984) 273-280.
[5.4] A. J. Konecni, G. A. Dixit, J. D. Luttmer, and R. H. Havemann, " A Stable Plasma Treated CVD Titanium Nitride Film for Barrier/Glue Layer Applications ", Proc. of VMIC (1996) 181-183.
[5.5] M. Wittmer, " Properties and Microelectronic Applications of Thin Films of Refractory Metal Nitrides ", J. Vac. Sci. Technol. A-3 (1985) 1797-1830.
[5.6] E. S. Kim, C. M. Lee, J. G. Lee, and H. B. Im, " Studies on the Nucleation and Growth of Chemical Vapor Deposited W on TiN Substrates ", Mater. Sci. and Engng. B17 (1993) 137-142.
[5.7] S. Kumar, D. R. Chopra, and G. C. Smith, " Characterization of Chemical Vapor Deposited W on Low-Pressure Chemically Deposited and Reactively Sputtered TiN Films ", J. Vac. Technol. B 11 (1993) 1815-1818.
[5.8] S. R. Kurtz, and R. G. Gordon, " Chemical Vapor Deposition of Titanium Nitride at Low Temperature ", Thin Solid Films 140 (1986) 277-290.
[5.9] M. Biberger, S. Jackson, G. Tkach, J. Schlueter, B. Jones, C. K. Huang, and L. Ouellet, "Collimated Ti/TiN Contact and Barrier Layers for Sub 0.5 mm CVD W Filled Holes ", Thin Solid Films 270 (1995) 522-525.
[5.10] K. Ishihara, K. Yamazaki, H. Hamada, K. Kamisako, and Y. Tarui, " Characterization of CVD TiN Films Prepared with Metal-Organic Source ", Jpn, J. Appl. Phys. 29 (1990) 2103-2105.
[5.11] I. J. Raaijmakers, " Low-Temperature Metal-Organic CVD of Advanced Barrier Layer for Microelectronics Industry ", Thin Solid Films 247 (1994) 85-93.
[5.12] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, " Reactive Sputter Deposited TiN on Glass ", Thin Solid Films 197 (1991) 117-128.
Chapter 6
[6.1] J. E. J. Schmitz, " Chemical Vapor Deposition of Tungsten and Tungsten Silicide for VLSI/ULSI Applications ", (Noyes Publications, New Jersey, 1992).
[6.2] E. S. Kim, C. M. Lee, J. G. Lee, and H. B. Im, " Studies on the Nucleation and Growth of Chemical Vapor Deposited W on TiN Substrates ", Mater. Sci. and Engng. B17 (1993) 137-142.
[6.3] S. Kumar, D. R. Chopra, and G. C. Smith, " Characterization of Chemical Vapor Deposited W on Low-Pressure Chemically Deposited and Reactively Sputtered TiN films ", J. Vac. Technol. B 11 (1993) 1815-1818.
[6.4] M. Wittmer, " Barrier Layers: Principles and Applications in Microelectronics ", J. Vac. Sci. Technol. A2 (1984) 273-280.
[6.5] C. Y. Ting and M. Wittmer, " The Use of Ti-Based Barrier Layers in Si Technology ", Thin Solid Films 96 (1982) 327-345.
[6.6] M. Wittmer, " Properties and Microelectronic Applications of Thin Films of Refractory Metal Nitrides ", J. Vac. Sci. Technol. A-3 (1985) 1797-1830.
[6.7] P. P. Apte, A. Paranjpe, and G. Pollack, " Use of TiN Cap Attain Low Sheet Resistance for Scaled TiSi2 on Sub-Half-Micrometer Polysilicon Line ", IEEE Electron Device Lett. EDL-17 (1996) 506-508.
[6.8] K. Y. Ahn, M. Wittmer, and C. Y. Ting, " Investination of TiN Reactively Sputtered Using a Sputter Gun ", Thin Solid Films 107 (1983) 45-54.
[6.9] M. Biberger, S. Jackson, G. Tkach, J. Schlueter, B. Jones, C. K. Huang, and L. Ouellet, " Collimated Ti/TiN Contact and Barrier Layers for Sub 0.5 mm CVD W Filled Holes ", Thin Solid Films 270 (1995) 522-525.
[6.10] K. Ishihara, K. Yamazaki, H. Hamada, K. Kamisako, and Y. Tarui, " Characterization of CVD TiN Films Prepared with Metal-Organic Source ", Jpn, J. Appl. Phys. 29 (1990) 2103-2105.
[6.11] I. J. Raaijmakers, " Low-Temperature Metal-Organic CVD of Advanced Barrier Layer for Microelectronics Industry ", Thin Solid Films 247 (1994) 85-93.
[6.12] S. R. Kurtz, and R. G. Gordon, " Chemical Vapor Deposition of Titanium Nitride at Low Temperature ", Thin Solid Films 140 (1986) 277-290.
[6.13] N. Yokoyama, K. Hinode, and Y. Homma, " LPCVD Titanium Nitride for ULSIs ", J. Electrochem. Soc. 138 (1991) 190-195.
[6.14] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, " Reactive Sputter Deposited TiN on Glass ", Thin Solid Films 197 (1991) 117-128.
[6.15] A. J. Konecni, G. A. Dixit, J. D. Luttmer, and R. H. Havemann, " A Stable Plasma Treated CVD Titanium Nitride Film for Barrier/Glue Layer Applications ", Proc. of VMIC Conf. (1996), 181-183.
[6.16] Y. C. Peng, L. J. Chen, Y. R. Yang, W. Y. Hsieh, and Y. F. Hsieh, " Structural and Electrical Properties of Chemical Vapor Deposition W Overgrowth on Physical Vapor Deposition and Metalorganic Chemical Vapor Deposition TiN Adhesion Layers ", J. Vac. Sci. Technol. B 16 (1998) 2013-2018.
Chapter 7
[7.1] A. K. Sinha, " Interconnects and Contacts for VLSI Applications ", Mater. Res. Soc. Symp. Proc. 54 (1985) 735-745.
[7.2] B. Roberts, A. Harrus, R. L. Jackson, " Interconnect Metallization for Future Device Generations ", Solid State Technology 38-Feb., (1995) 69-74.
[7.3] P. B. Ghate, " Aluminum Alloy Metallization for Integrated Circuits ", Thin Solid Films 83 (1981) 195-205.
[7.4] M. Wittmer, " Barrier Layers: Principles and Applications in Microelectronics ", J. Vac. Sci. Technol. A2 (1984) 273-280.
[7.5] C. Y. Ting and M. Wittmer, " Ti-Based Barrier Layers in Si Technology ", Thin Solid Films 96 (1982) 327-345.
[7.6] S. C. Chen, A. Sakamoto, H. Tamura, M. Yoshimaru, and M. Ino, " Applicability of TiN Adhesion Layer Formed by Nitridation of Sputtered Ti Film to Blanket CVD-W Contact Filling ", Jpn. J. Appl. Phys. 32 (1993) 1929-1933.
[7.7] E. G. Golgan, S. Greco, N. Greco, and J. F. White, " Formation Mechanism of Ring Defects During Metal RIE ", Proc. of VMIC Conf. (1994) 284-286.
[7.8] M. Inoue, K. Hashizume, and H. Tsuchikawa, " The Properties of Aluminum Thin Films Sputter Deposited at Elevated Temperature ", J. Vac. Sci. Technol. A-6 (1988) 1636-1639.
[7.9] T. Takeyasu, Y. Kawano, E. Kondoh, T. Katagiri, H. Yamamoto, H. Shinriki, and H. Yamamoto, T. Ohta, " Characterization of Direct-Contact Via/Plug Formed by Using Selective Al Chemical Vapor Deposition ", Jpn. J. Appl. Phys. 33 (1994) 424-428.
[7.10] M. L. Green, R. A. Levy, R. G. Nuzzo, and E. Coleman, " Al Films Prepared by Metal-Orgainc Low Pressure Chemical Vapor Deposition ", Thin Solid Films 114 (1984) 367-377.
[7.11] U. Smith, N. Kristensen, F. Ericson, and J.-A. Schweitz, " Local Stress Rexlation Phenomena in Thin Aluminum Films ", J. Vac. Sci. Technol. A 9 (1991) 2527-2535.
[7.12] N. Kristensen, F. Ericson, J.-A. Schweitz, and U. Smith, " Grain Collapses in Strain Aluminum Thin Films ", J. Appl. Phys. 69 (1991) 2097-2104.
[7.13] O. McCaldin and H. Sankur, " Precipitation of Si from the Al Metallization of Intergrated Circuits ", Appl. Phys. Lett. 20 (1972) 171-172.
Chapter 8
[8.1] A. K. Sinha, " Interconnects and Contacts for VLSI Applications ", Mater. Res. Soc. Symp. Proc. 54 (1985) 735-745.
[8.2] S. P. Muraka, " Silicide for VLSI Applications ", (Academic, Orlando, 1983).
[8.3] J. P. Gambino and E. G. Colgan, " Silicides and Ohmic Contacts ", Mater. Chem. Phys. 52 (1998) 99-146.
[8.4] T. Brat, C. M. Osburn, T. Finstad, J. Liu, and B. Ellington, " Self-Aligned Ti Silicide Formed by Rapid Thermal Annealing ", J. Electrochem. Soc. 133 (1986) 1451-1458.
[8.5] J. B. Lasky, J. S. Nakoa, O. J. Cain, and P. J. Geiss, " Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2 ", IEEE Trans. Electron. Dev. ED-38 (1991) 262-269.
[8.6] Z. Ma, L. H. Allen, and D. D. J. Allman, " Effect of Dimension Scaling on the Nucleation of C54 TiSi2 ", Thin Solid Films 253 (1994) 451-435.
[8.7] Y. Matsubara, T. Horiuchi-T, and K. Okumura, " Activation-Energy for the C49-to-C54 Phase-Transition of Polycrystalline TiSi2 Films with Arsenic Impurities ", Appl. Phys. Lett. 62 (1993) 2634-2636.
[8.8] A. Mouroux, S. -L. Zhang, W. Kaplan, S. Nygren, M. Ostling, and C. S. Petersson, " Enhanced Formation of the C54 Phase of TiSi2 by an Interposed Layer of Molybdenum ", Appl. Phys. Lett. 69 (1996) 975-977.
[8.9] Q. Xu and C. M. Hu, " New Ti-SALICIDE Process Using Sb and Ge Preamorphization for Sub-0.2 mm CMOS Technology ", IEEE Trans. Electron Device, ED-45 (1998) 2002 -2009.
[8.10] K. Fujii, R. T. Tung, D. J. Eaglesham, K. Kikuta, and T. Kikkawa, " Phase Transformation of Titanium Disilicide Induces by High- Temperature Sputtering ", Mater. Res. Soc. Symp. Proc. 402 (1996) 83-88.
[8.11] J. A. Kittl, Q. Z. Hong, H. Yang, N. Yu, S. B. Samavedam, and M. A. Gribelyuk, " Advanced Salicides for 0.10 Mu-M CMOS - Co Salicide Processes with Low Diode Leakage and Ti Salicide Processes with Direct Formation of Low-Resistivity C54 TiSi2 ", Thin Solid Films 332 (1998) 404-411.
[8.12] H. J. W. van Houtum and I. J. M. M. Raaijmakers, and T. J. M. Menting, " Influence of Grain Size on the Transformation Temperature of C49 TiSi2 to C54 TiSi2 ", J. Appl. Phys. 61 (1987) 3116-3118.
[8.13] P. P. Apte, A. Paranjpe, and G. Pollack, " Use of TiN Cap Attain Low Sheet Resistance for Scaled TiSi2 on Sub-Half-Micrometer Polysilicon Line ", IEEE Electron Device Lett. EDL-17 (1996) 506-508.
Chapter 9
[9.1] G. Le Lay, " Physics and Electronics of the Noble-Metal/Elemental-Semiconductor Interface Formation: A Status Report ", Surf. Sci. 132 (1983) 169-204.
[9.2] F. K. LeGoues, M. Liehr, M. Renier, and W. Krakow, " Microstructure of Epitaxial Ag/Si(001) and Ag/(001) Interfaces ", Philoso. Mag. B57 (1988) 179-189.
[9.3] M. Hanbucken and G. Le Lay, " Formation of Noble-Metal-Si(100) Interface ", Sur. Sci. 168 (1986) 122-132.
[9.4] Y. C. Peng, C. R. Chen, and L. J. Chen, " Improvement of Morphological Stability of Ag/Si Interface with an Interposing Au Layer ", J. Mater. Res. 13 (1998) 90-93.
[9.5] C. R. Chen and L. J. Chen, " Morphological Evolution of the Low-Temperature Oxidation of Silicon with a Gold Overlayer", J. Appl. Phys. 78 (1995) 919-925.
[9.6] T. C. Nason, L. You, and T. M. Lu, " Room Temperature Epitaxial Growth of Ag on Low-Index Si Surface by a Partially Ionized Beam ", J. Appl. Phys. 72 (1992) 466-470.
[9.7] M. Wittmer, " Barrier Layers: Principles and Applications in Microelectronics ", J. Vac. Sci. Technol. A2 (1984) 273-280.
[9.8] C. Y. Ting and M. Wittmer, " Ti-Based Barrier Layers in Si Technology ", Thin Solid Films 96 (1982) 327-345.
[9.9] M. Biberger, S. Jackson, G. Tkach, J. Schlueter, B. Jones, C. K. Huang, and L. Ouellet, " Collimated Ti/TiN Contact and Barrier Layers for Sub 0.5 mm CVD W Filled Holes ", Thin Solid Films 270 (1995) 522.
[9.10] I. J. Raaijmakers, "Low-Temperature Metal-Organic CVD of Advanced Barrier Layer for Microelectronics Industry", Thin Solid Films 247 (1994) 85-93.
[9.11] S. P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, (Butterworth- Heinemann, Boston, 1993).
[9.12] J. Yuhara, M. Inoue, and K. Morita, " Thermal Stability of Two-Dimension Atomic Structures of Au-Ag Adsorbates on Si (111) Surfaces ", J. Vac. Sci. Technol. A-11 (1993) 2714-2717.
[9.13] C. R. Chen and L. J. Chen, " Structural Evolution and Atomic Structure of Ultrahigh Vacuum Deposited Au Thin Films on Silicon at Low Temperatures " Appl. Surf. Sci. 92 (1996) 507-512.
[9.14] S. Hassam, J. Agren, M. Gauneescard and J. P. Bros, " The Ag-Au-Si System: Experimental and Calculated Phase Diagram ", Metall. Trans. A 21 (1990) 1877-1884.
[9.15] A. Mogro-Campero, " Simple Estimate of Elevtromicgration Failure in Metallic Thin Film ", J. Appl. Phys. 53 (1982) 1224-1225.
[9.16] I. Suni, M. Maenpaa, M-A Nicolet, and M. Luomajarvi, " Thermal Stability of Hafnium and Titanium Nitride Diffusion Barriers in Multilayer Contacts to Silicon ", J. Electrochem. Soc. 130 (1983) 1215-1218.
[9.17] J. O. Olowolafe, C. J. Mogab, R. B. Gregory, and M. Kottke, " Interdiffusions in Cu/Reactive-Ion-Sputtered TiN, Au/Chemical-Vapor-Deposited TiN, Cu/TaN, and TaN/Cu/TaN Thin Films Structures: Low Temperature Diffusion Analyses ", J. Appl. Phys. 72 (1992) 4099-4103.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊