跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 01:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾時俊
研究生(外文):S.C. Chung
論文名稱:鋅大氣腐蝕初期電化學機理研究
論文名稱(外文):The Electrochemical Mechanism Studies on the Initial Stages of the Zinc Atmospheric Corrosion
指導教授:施漢章鮮祺振
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
中文關鍵詞:大氣腐蝕電化學
外文關鍵詞:Atmospheric CorrosionElectrochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要論述鋅大氣腐蝕初期的腐蝕機構與防制。有別於傳統的測試方法,如重量損失法,本研究發展出一套測試方法-在甲醇溶液中進行的交流阻抗頻譜測試-能量測曝露在短時間並任何大氣曝露條件下之試片的電化學性質。測試的試片先曝露在精確控制氧氣濃度、二氧化碳濃度、相對濕度、溫度及汙染鹽類濃度的測試箱中,再以甲醇系統的交流阻抗頻譜測試獲得其電化學極化阻抗(Rp)。試片表面的腐蝕生成物以grazing angle XRD、FTIR、XPS及EXAFS等方法鑑定。在高相對濕度( 95%)、CO2濃度> 40 ppm的曝露條件下發現,鋅表面腐蝕生成物的Rp隨時間及環境中的相對濕度而增加。在中等相對濕度( 95%)、CO2濃度 40-500 ppm的曝露條件下發現,Rp一開始隨時間增加,而後突然下降,到最低點後又緩慢增加。據此建立鋅大氣腐蝕初期的腐蝕機構。
關於鋅大氣腐蝕的防制,本論文研究兩種防制方法:符合環保趨勢的非鉻酸鹽系化學轉化膜及電化學陽極覆膜。研究中開發非鉻酸鹽系化學轉化膜,並使用自行發展出來的測試方法,證實抗蝕性優良。電化學陽極覆膜的抗蝕性採用在水溶液中的電化學交流阻抗來評估。結果發現電化學陽極覆膜的腐蝕機構,隨浸置時間由電荷轉移控制轉變為擴散控制的機構。本論文進一步建立其詳細的腐蝕機構及對應的等效電路。
The mechanism and prevention of the zinc atmospheric corrosion are focused, especially in the initial stages. An experimental technique - ex-situ electrochemical impedance spectroscopy (EIS) in a nonaqueous electrolyte (methanol) - on studying the initial stages of the zinc atmospheric corrosion under any exposure condition is developed. Compared with the traditional techniques for studying atmospheric corrosion, such as gravimetry, the EIS technique significantly reduced the exposure time for detectable corrosion at any relative humidity from several days to a few hours. The samples were first exposed to synthetic atmospheres with careful control of O2 and CO2 concentrations, relative humidity, temperature and concentrations of contaminated salts. EIS was then used to measure the polarization resistance (Rp) of these exposed samples. The corrosion products were analyzed by a combination of grazing-angle x-ray diffraction, Fourier transform infrared spectroscopy, photoelectron spectroscopy and extended x-ray absorption fine structure spectroscopy (EXAFS) measurements. Several interesting phenomena occurring in the initial stage of the zinc atmospheric corrosion were demonstrated by studying the electrochemical properties of the surface layer formed on zinc. At high values of relative humidity (RH 95-100%), with CO2 > 40 ppm, the Rp of the surface film formed on zinc increased monotonically with time and relative humidity. At intermediate values of relative humidity (RH 50-85%) in the presence of CO2 (40-500 ppm), Rp first increased with time, reached a maximum, then dropped from the maximum value before again rising sluggishly. A brief description of the mechanism of zinc atmospheric corrosion is suggested.
Concerning the prevention against zinc atmospheric corrosion, environmentally compatible non-chromate treatment and electrochemical anodic coating (ANC) were investigated. Non-chromate conversion treatment was inspected and tested using the optimum test conditions developed for the determination of the protective value of a non-chromate conversion coating by exposing zinc specimens contaminated with 1.5 g/cm2 NaCl particles to 80% RH at ambient temperature. The corrosion mechanism of ANC and a modified one (CoANC) by adding cobalt ions to the electrolyte in the anodic treatment was investigated using EIS. By comparing the EIS, the corrosion of both ANC-coated zinc (ANC-ZN) and CoANC-ZN was found changing from charge transfer control process to diffusion control process during the prolonged immersion in chloride environments. Two modes of corrosion process based on the immersion time and their equivalent circuits were proposed in considering the chemical products and physical structures resulting from the corrosion reactions.
封面
誌謝
摘要
Contents
ABSTRACT
Chapter 1 Introduction
1.1 Motivation
1.2 Reaction Sequwnces of Zinc Atmospheric Corrosion
1.3 Techniques on Investigating Zinc Atmospheric Corrosion
1.4 Corrosion Prevention Against Zinc Atmospheric Corrosion
Chapter 2 Theoretical Basis
2.1 Mixed Potential Theory
2.2 Electrochemical Impedance Spectroscopy
Chapter 3 Experimental Instruments and Techniques
3.1 Exposure Tests
3.2 Electrochemical Impedance Spectroscopy(EIS)
3.3 Fourier Transform Infrared Spectroscopy(FTIR)
3.4 X-ray Photoelectron Spectroscopy(XPS)
3.5 Grazing Angle X-ray Diffraction(XRD)
3.6 Extended X-ray Absorption Fine Structure Spectroscopy(EXAFS)
3.7 Scanning Electron Microscopy(SEM)
3.8 Electron Probe Microanalysis(EPMA)
Chapter 4 Corrosion Mechanism for Zinc Exposed to the Unpolluted Atmosphere
4.1 Introduction
4.2 Experimental
4.3 Results and Discussion
4.4 Conclusions
Chapter 5 Zinc Atmosphere Corrosion in the Presence of Contaminated Salts
5.1 Introduction
5.2 Experimental
5.3 Results and Discussion
5.4 Conclusions
Chapter 6 Corrosion Prevention against Zinc Atmospheric Corrosion
6.1 Non-chromate Treatment
6.2 Anodized Coating on Zinc
6.3 Conclusion
Chapter 7 Summary and Future Work
APPENDIX
REFERENCES
1. H. Morrow, in Encyclopedia of Materials Science and Engineering, Vol. 7, M. B. Bever, Ed., MIT Press, Cambridge, Massachusetts (1986).
2. J. H. Wang, F. I. Wei and H. C. Shih, Corrosion, 52, 600 (1996).
3. J. H. Wang, F. I. Wei and H. C. Shih, Corrosion, 52, 900 (1996).
4. S. C. Chung, H. C. Shih and C. C. Hsien, Mater. Perform., 38, 40 (1999).
5. W. Feitknecht, Chem. Ind., 1102 (1959).
6. T. E. Graedel, J. Electrochem. Soc., 136(4), 193C (1989).
7. I. Odnevall and M. Westdahl, Corros. Sci., 34, 1231 (1993).
8. I. Odnevall and C. Leygraf, Corros. Sci., 34, 1213 (1993).
9. I. Odnevall and C. Leygraf, J. Electrochem. Soc., 138, 1923 (1991).
10. I. Odnevall and C. Leygraf, Corros. Sci., 36, 1551 (1994).
11. I. Odnevall and C. Leygraf, in Atmospheric Corrosion, ASTM STP 1239, p. 215, W. W. Kirk and H. H. Lawson, Eds., American Society for Testing and Materials, Philadelphia (1995).
12. T. Falk, J.-E. Svensson and L.-G. Johansson, J. Electrochem. Soc., 145, 39 (1998).
13. R. E. Lobnig, D. J. Siconolfi, L. Psota-Kelty, G. Grundmeir, R. P. Frankenthal, M. Stratmann and J. D. Sinclair, J. Electrochem. Soc., 143, 1539 (1996).
14. J. C. Oung and H. C. Shih, Corros. Prevent. Control, 44, 173 (1997).
15. C. Fiaud, M. Keddam, A. Kadri and H. Takenouti, Electrochim. Acta, 32, 445 (1987).
16. M. Keddam, A. Hugot-Le-Goff, H. Takenouti, D. Thierry and M. C. Arevalo, Corros. Sci., 33, 1243 (1992).
17. X. G. Zhang and E. M. Valeriote, in Atmospheric Corrosion, ASTM STP 1239, W. W. Kirk and H. H. Lawson, Editors, p. 230, American Society for Testing and Materials, Philadelphia, PA (1995).
18. A. Nishikata, Y. Ichihara and T. Tsuru, Corros. Sci., 37, 897 (1995).
19. A. Nishikata, Y. Ichihara, Y. Hayashi and T. Tsuru, J. Electrochem. Soc., 144, 1244 (1997).
20. N. D. Tomashov, Corrosion, 20, 7t (1964).
21. H. C. Shih, J. C. Oung, J. T. Hsu, J. Y. Wu and F. I .Wei, Mater. Chem. Phys., 37, 230 (1994).
22. E. Johnasson and J. Gullman, in Atmospheric Corrosion, ASTM STP 1239, p. 240, W. W. Kirk and H. H. Lawson, Eds., American Society for Testing and Materials, Philadelphia (1995).
23. L. F. G. Williams, Plating, 931 (1972).
24. H. C. Shih, J. R. Cheng and M. Y. Wu, U.S. Patent 5,275,703 (1993).
25. H. C. Shih, J. R. Cheng and M. Y. Wu, German Patent 4240903 (1996).
26. T. R. Tan, J. R. Cheng, J. H. Wang, J. G. Duh and H. C. Shih, Surf. Coat. Technol., 110, 194 (1998).
27. T. R. Tan, Master Dissertation, National Tsing Hua University, R.O.C. (1994)
28. H. C. Shih, F. Y. Shyr, J. W. Hsu, S. C. Chung and S. L. Sung, Plat. Surf. Finish., 86, 104 (1998).
29. D. A. Jones, in Principles and Prevention of Corrosion, pp. 86-92, Macmillan, New Jersey (1991).
30. M. G. Fontana, in Corrosion Engineering, 3rd ed., pp. 458-468, McGraw-Hill, New York (1988).
31. H. H. Uhlig and R. W. Revie, in Corrosion and Corrosion Control, 3rd ed., pp. 35-53, John Wiley & Sons, New York (1985).
32. A. J. Bard and L. R. Faulkner, in Electrochemical Methods, pp. 347-353, John Wiley & Sons, New York (1980).
33. J. R. Macdonald, in Impedance Spectroscopy, pp.13-132, John Wiley & Sons, New York (1987).
34. W. S. Tait, in An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, pp. 79-93, Pair O Docs, Wisconsin (1994).
35. J. Banas, K.-G. Schutze and E. Heitz, J. Electrochem. Soc., 133, 253 (1986).
36. W. F. K. Wynne-Jones, J. Phys. Chem., 31, 1657 (1927).
37. C. Wagner and W. Traud, Z. Electrochem., 44, 391 (1938).
38. F. B. M. van Zon, Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, p. 18 (1989).
39. P. A. Lee and G. Beni, Phys. Rev. B, 15, 2862 (1977).
40. F. B. M. van Zon, S. D. Maloney, B. C. Gates and D. C. Koningsberger, J. Am. Chem. Soc., 115, 10317 (1993).
41. S. Ghose, Acta Cryst., 17, 1051 (1964).
42. S. C. Abrahams and J. L. Bernstein, Act Cryst., B25, 1233 (1969).
43. P. V. Strekalov, V. V. Agafonov and Yu. N. Mikhailovskii, Prot. Met., 8, 521 (1972).
44. P. B. P. Philipps and D. W. Rice in Corrosion Chemistry, G. R. Brubaker and P. B. P. Phipps, Editor, ACS Symposium Series, Vol. 89, p.235, American Chemical Society (1979).
45. C. Barnes, J. J. B. Ward and T. S. Sehmbi, “Non-chromate White Rust Inhibitor,” in Annual Technical Conference, Institute of Metal Finishing (Brighton: 1982), p. 10/1.
46. F. Mansfeld, M. W. Kendig and S. Tsai, Corrosion, 38, 570 (1982).
47. D. C. Silvermann and J. E. Carrico, ibid., 44, 280 (1988).
48. K. Juettner, W. J. Lorenz, M. W. Kendig and F. Mansfeld, J. Electrochem. Soc., 135, 332 (1988).
49. L. Fedrizzi, L. Ciaghi, P. L. Bonora, R. Fratesi and G. Roventi, J. Appl. Electrochem., 22, 247-254 (1992).
50. C. Deslouis, M. Duprat and C. Tournillon, J. Electroanal. Chem., 181, 119 (1984)
51. L. M. Baugh, Electrochim. Acta, 24, 657 (1979).
52. C. Cachet, C. P. De Pauli and R. Wiart, Corros. Sci., 25 493, (1985).
53. C. M. Rangel and L. F. Cruz, Corros. Sci., 33, 1479 (1992).
54. J. Hendrikx, W. Visscher and E. Barendrecht, Electrochim. Acta, 30, 999 (1985).
55. L. Sziraki and L. Kiss, ACH-Models in Chem., 131, 581 (1994).
56. B. Lengyel, Z. Labar and R. Kahan, Mater. Chem., 7, 183 (1982).
57. A. Jardy, R. Rosset and R. Wiart, J. Appl. Electrochem., 14, 537 (1984).
58. B. A. Boukmap, Equivalent Circuit User’s Manual, 2nd ed., University of Twente, Einshede (1989).
59. J. R. Macdonald, in Impedance Spectroscopy, p. 60, John Wiley & Sons Inc., New York (1987)
60. J. R. Cheng, Ph. D Dissertation, National Tsing Hua University, R.O.C. (1994)
61. K. J. Vetter, in Electrochemical Kinetics, Academic Press (1961)
62. L. Beaunier, I. Epelboin, J. C. Lestrade and H. Takenouti, Surf. Tech., 4, 237 (1976)
63. G. W. Walter, Conf. Autralian Conc. Assoc., paper K2 (1977)
64. X. G. Zhang, in Corrosion and Electrochemistry of Zinc, p. 54, Plenum Press, New York (1996)
65. L. M. Baugh, Electrochim. Acta, 24, 657 (1979)
66. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941)
67. I. Epelboin and M. Keddam, J. Electrochem. Soc., 117, 1051 (1970)
68. J. R. Macdonald, in Impedance Spectroscopy, p. 16, John Wiley & Sons Inc., New York (1987)
69. A. J. Bard and L. R. Faulkner, in Electrochemical Methods, p. 352, Wiley, New York (1980)
70. I. Suzuki, Corros. Sci., 25, 1029 (1985)
71. A. J. Davenport and H. S. Isaacs, in Surface and Interface Characterizations in Corrosion, NACE, p. 67 (1996).
72. M. J. Fay, A. Proctor, D. P. Hoffmann and D. M. Hercules, Anal. Chem., 60, 1225A (1988)
73. J. F. Lee, J. Chinese Chem. Soc., 53, 280 (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top