跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏孟昱
研究生(外文):Wei, Mon-Yue
論文名稱:球形預混火焰之上游交互作用
論文名稱(外文):Upstream Interaction of Spherically Premixed Flames
指導教授:許文震許文震引用關係
指導教授(外文):Sheu, Wen-Jenn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:上游交互作用拉伸率反應速率
外文關鍵詞:upstream interactionstretchreaction rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紊流燃燒的過程中,由於流場的不規則性,使得火焰面形狀產生皺折,火焰面的交錯亦使火焰與火焰間發生許多不同形式的交互作用,由於此過程複雜而高度非線性,故須加以簡化,以探討特定機制的效應,因此本文以數值方法探討球形預混火焰的上游交互作用。
影響反應速率的機制首先須考慮火焰拉伸率的效應。火焰拉伸率來自於火焰面上的切線速度梯度,以及曲率與法線速度造成的面積改變,在此希望討論的是後者所造成的交互作用。本論文探討球形火焰面向內傳播的漸縮過程中,曲率半徑漸小,形成拉伸率逐漸增加而影響反應速率;其次,當球面火焰半徑極小時,預熱區相接觸,由於溫度與各成份的擴散速率不同,而產生的上游交互作用,也會改變反應速率,而產生微爆或不完全燃燒。
根據從前對於兩平面預混火焰間上游交互作用所得的結果可知,當有效路易數(effective Lewis number)大於1,反應速率會因上游交互作用而增加,反之,當有效路易數小於1時,反應速率會減少。與平面預混火焰不同的是,球形預混火焰考慮火焰拉伸率對反應速率的效應。結果顯示,在球形預混火焰的上游交互作用中,反應速率的增加(Le > 1)或減緩(Le < 1),會因負的火焰拉伸率影響而更加顯著。

Upstream interaction of a spherically premixed flame is investigated numerically in this work. According to the results of upstream interactions between two plane premixed flames in the previous paper, the burning rate for Le > 1 is accelerated during upstream interaction, whereas the burning rate is decelerated for Le < 1. Unlike the plane premixed flame, the dependence of burning rate on the flame stretch is involved for spherically premixed flames. The results reveal that the acceleration (Le > 1) and the deceleration (Le < 1) of burning rate are enhanced for upstream interactions of spherically premixed flames due to the influence of flame stretch.

摘要 i
目錄 ii
圖表目錄 iii
符號說明 iv
第一章 緒論……………………… 1
1.1前言………………………… 1
1.2文獻回顧…………………… 2
第二章 數學模式分析…………… 6
2.1問題描述…………………… 6
2.2基本假設…………………… 6
2.3數學模式…………………… 7
2.3.1統御方程式…………… 7
2.3.2起始條件……………… 8
2.3.3邊界條件……………… 8
2.4數值方法…………………… 9
第三章 結果與討論……………… 11
3.1富油火焰…………………… 11
3.2貧油火焰…………………… 13
3.3當量燃燒火焰……………… 14
第四章 結論……………………… 16
參考文獻………………………… 17

1. Chung, S. H., Chung, D. H., Fu, C. and Cho, P. (1996). Local Extinction Karlovitz Number for Premixed Flames. Combustion and Flame, 106, 515.
2. Peters, N. (1986). Laminar Flamelet Concepts in Turbulent Combustion. Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 1231.
3. Matalon, M. (1983). On Flame Stretch. Combust. Sci. and Tech., 31, 169.
4. Wagner, T. C. and Ferguson, C. R. (1985). Bunsen Flame Hydrodynamics. Combustion and Flame, 59, 267.
5. Law, C. K., Cho, P., Mizomoto, M. and Yoshida, H. (1986). Flame Curvature and Preferential Diffusion in the Burning Intensity of Bunsen Flames. Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 1803.
6. Echekki, T. and Mungal, M. G. (1990). Flame Speed Measurements at the Tip of a Slot Burner: Effects of Flame Curvature and Hydrodynamic Stretch. Twenty-Third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p. 455.
7. Matlon, M. and Matkowsky, B. J. (1982). Flames as Gasdynamic Discontinuities. J. Fluid Mech., 124, 239.
8. Chung, S. H. and Law, C. K. (1989). Analysis of Some Nonlinear Premixed Flame Phenomena. Combustion and Flame, 75, 309.
9. Sivashinsky, G. I. (1974). On a Converging Spherical Flame Front. Int. J. Heat Mass Transfer, 17, 1499.
10. Frankel, M. L. and Sivashinsky, G. I. (1983). On Effects due to Thermal Expansion and Lewis Number in Spherical Flame Propagation. Combust. Sci. and Tech., 31, 131.
11. Mishra, D. P., Paul, P. J. and Mukunda, H. S. (1994). Stretch Effects Extracted from Inwardly and Outwardly Propagating Spherical Premixed Flames. Combustion and Flame, 97, 35.
12. Lin, T. H. and Sohrab, S. H. (1987). On the Transition of Diffusion to Premixed Flames in Conserved Systems. Combustion and Flame, 68, 73.
13. Sheu, W. J., Lin, M. C. and Yang, S. A. (1995). Upstream Interaction between Premixed Flames. Combust. Sci. and Tech., 110-111, 1.
14. Westbrook, C. K. and Dryer, F. L. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combust. Sci. and Tech., 27, 31.
15. Coffee, T. P. and Heimerl, J. M. (1981). Transport Algorithms for Premixed, Laminar Steady-State Flames. Combustion and Flame, 43, 273.
16. Romas, J. I. (1983). Numerical Studies of Laminar Flame Propagation in Spherical Bombs. AIAA J., 21(3), 415.
17. Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, Chap. 5, p. 90.
18. Frankel, M. L. and Sivashinsky G. I. (1984). On Quenching of Curved Flames. Combust. Sci. and Tech., 40, 257.
19. Flaherty, J. E., Frankel, M. L., Roytburd, V. and Sivashinsky G. I. (1985). Numerical Study of Quenching of Inward Propagating Spherical Flames. Combust. Sci. and Tech., 43, 245.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top