跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡惠娟
研究生(外文):Tsai Huei-Jiuan
論文名稱:國小六年級學生百分比概念學習表現與認知成份之分析
論文名稱(外文):The Analysis on Learning Performance and Cognitive Components of Percent Concept among Sixth Graders
指導教授:丁振豐丁振豐引用關係
學位類別:碩士
校院名稱:臺南師範學院
系所名稱:國民教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
畢業學年度:87
語文別:中文
論文頁數:192
中文關鍵詞:百分比國小數學學習表現認知成份
外文關鍵詞:percentlearning performancecognitive components
相關次數:
  • 被引用被引用:8
  • 點閱點閱:635
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究旨在利用Parker(1995)所提出百分比認知分析脈絡,編製一份百分比的學習表現評量,以了解國小六年級學生在百分比概念上的學習表現情形,以了解未知數位置與情境脈絡的影響,及學生在不同情境脈絡及不同未知數位置下的表現,並以研究者所提出之「百分比問題認知成份」來解釋其表現,且針對各問題進行逐題分析。
研究樣本共選取台南縣、市各2所學校,共11班,395位學生為樣本施測。以電腦軟體ITAN及SPSS8.0進行試題和統計分析,統計考驗為完全受試者內設計二因子變異數考驗、單純主要效果考驗及杜凱氏HSD法的事後比較,所得之研究結論如下:
1.全體學生在三個未知數的平均通過率以比較量未知最好,基準量未知最差。
2.全體學生在九個脈絡的平均通過率以「部分/整體」及「甲為乙的多少﹪小」的問題最高,「比原來減少了多少﹪」的問題最低。
3.未知數位置與情境脈絡間有交互作用。
4.在不同未知數位置中「倍數關係」基模的問題皆比「差異量比較」基模的問題容易。
5.在不同脈絡中,不需選擇基準量的問題為容易,以使用「尋找基準量」基模最困難,但在脈絡A「增加的問題」、脈絡B「增加的問題」、脈絡D「比少的問題」三個脈絡中以使用「判斷基準量」基模最為困難。
6.學生在判斷比較量和基準量上的錯誤是較常見的錯誤。
7.需要計算比較量和基準量的差的問題學生較無法掌握。
The purpose of this research was to develop a performance assessment of percent concept from Parker''s(1995)cognitive mathematical analysis of percent in context which measured pupils'' learning performance and pupils'' performance on the questions of three possible unknowns and nine different contexts. Moreover, the investigator analyzed each question by " The Cognitive Components of Percent Concept" to explain pupils'' performance.
There were 395 6th grader from four elementary schools of Tainan City and Tainan County. Two-way analysis of variance, simple main effect, and a posteriori comparisons of Tukey method with ITAN and SPSS8.0 were adopted to analyze the data.
The main finding were as follows:
1.On the questions of unknown comparative amount was superior to on the questions of unknown base.
2.With the condition of different context, the subjects received highest scores on the question of "part/whole" and "smaller is ﹪"and got lowest scores on the question of "decrease by ﹪".
3.There were interactions between the three possible unknowns and nine different contexts.
4.On the questions of unknowns comparative, the schema of "multiplicative relationship" was easier than the schema of " comparing difference".
5.In nine different context, the easiest was the schema of not choosing the base, and the hardest was the schema of " finding the base". However, in the context of " increase to ﹪of", " increase by ﹪", and "smaller by ﹪", the hardest was the schema of "determining the base".
6.The common mistake was found in determining the comparative percentage and the base.
7.It was difficult for most students that questions were counted the difference between the comparative percentage and the base.
目次
第一章 緒論…………………………………….…………………1
第一節 研究動機…………………………………………………...……2
第二節 研究目的及研究假設………………………………..………….5
第三節 名詞解釋………………………………………………..……….7
第二章 文獻探討………………………………………………...10
第一節 百分比的意義………………………………………………….10
第二節 百分比的知識及作業………………………………………….23
第三節 解題能力之相關研究………………………………………….37
第四節 百分比的知識結構.....................................................................53
第三章 研究設計……………...........……………………………57
第一節 研究對象及研究工具………………………………………….57
第二節 資料分析……………………………………………………….64
第三節 研究限制.....................................................................................66
第四章 結果與討論……………………………………………...68
第一節 國小六年級學生百分比的學習表現.....…………...………….68
第二節 未知數位置與百分比脈絡交互作用對解題表現之影響........................................................…………...………….75
第三節 相同未知數位置中不同脈絡之表現.…………………...…….79
第四節 相同脈絡中不同未知數位置之表現........…………………...103
第五節 逐題表現分析........…………………………………………...109
第五章 結論與建議......…………………………..…………….156
第一節 結論………………………….…………….....……….156
第二節 建議.................………………………………….…….161
參考書目………………………………...………………………..165
中文部分………………………………………………………………...165
英文部分………………………………………………………………...169
附錄………………………………………………..……………...178
附錄一 百分比的學習表現評量……………………………………...178
附錄二 題目鑑別度指數............……………………….....………......182
附錄三 原始分數與百分等級及直線轉換標準分數對照表………...183
附錄四 百分比的學習表現評量選項設計…………………………...184
表次
表2-2-1 簡單加減法文字題之類型………………………………………….29
表2-2-2 百分比問題的雙向細目表………………………………………….33
表2-3-1 未知數問題的認知成份…………………………….……………....43
表2-3-2 模式一難度分析………………………………………….………....43
表2-3-3 模式二難度分析………………………………………………….…44
表2-3-4 模式三難度分析…………………………………………….………44
表2-3-5 各年級兒童的答對比率…………………………………………….45
表2-3-6 各層次兒童的解題能力預測…………………………………….…46
表2-3-7 各題目的知識基模………………………………………….………47
表2-4-1 百分比問題的認知成份…………………………………….………56
表3-1-1 受試樣本人數統計表....………………………….…………………57
表3-1-2 百分比問題雙向細目表…………………….………………………59
表3-1-3 「百分比的學習表現評量」之題目分析摘要表….…………………62
表3-1-4 受試各班之效標關聯效度……………………….…………………63
表4-1-1 全體與各組學生的通過比率.............................................................69
表4-2-1 各細格通過率................………………………………………….....76
表4-2-2 完全受試者內設計二因子變異數分析摘要表….…………………77
表4-2-3 單純主要效果的變異數分析摘要表.....................................………78
表4-3-1 比較量未知中各脈絡的事後比較......……………….......................80
表4-3-2 比較量未知中各問題難度排序..............………………….……......81
表4-3-3 比值未知中各脈絡的事後比較......………………….……………..88
表4-3-4 比值未知中各問題難度排序..............………..….…………………89
表4-3-5 基準量未知中各脈絡的事後比較......………………….………..…95
表4-3-6 基準量未知各問題難度排序..............………………………….......96
表4-4-1 各脈絡下的事後比較....................................................…………...103
表4-5-1 第1題選項分析.............…………………………………………...110
表4-5-2 第2題選項分析.............…………………………………………...112
表4-5-3 第3題選項分析.............…………………….………………….….114
表4-5-4 第4題選項分析.............………………….………………………..116
表4-5-5 第5題選項分析.............………………………….………………..118
表4-5-6 第6題選項分析.............…………………….…………………..…119
表4-5-7 第7題選項分析.............………………….…………………..……121
表4-5-8 第8題選項分析.............…………………….……………………..122
表4-5-9 第9題選項分析...............…………………...….……………….…124
表4-5-10 第10題選項分析.............……………………………………...…125
表4-5-11 第11題選項分析.............……………………………………...…127
表4-5-12 第12題選項分析.............………………………………………...129
表4-5-13 第13題選項分析.................…………………….………………..131
表4-5-14 第14題選項分析.................………………………………...........133
表4-5-15 第15題選項分析.................………………………………...........134
表4-5-16 第16題選項分析.............………....…….…………………......…136
表4-5-17 第17題選項分析.............………………….…………………..…138
表4-5-18 第18題選項分析...........………………….………………………140
表4-5-19 第19題選項分析.............…………………………………..….....142
表4-5-20 第20題選項分析.............………………….…………………..…143
表4-5-21 第21題選項分析...............……………………………..…...........145
表4-5-22 第22題選項分析.............………………….……………......……146
表4-5-23 第23題選項分析.............…………….……………………..........148
表4-5-24 第24題選項分析............…………………….…………………...149
表4-5-25 第25題選項分析............………………….…………………...…151
表4-5-26 第26題選項分析............……………….…………………….......153
表4-5-27 第27題選項分析……..........………….…………………….........154
圖次
圖2-1-1 分數的五種意義……………………………………….........………16
圖2-1-2 教材地位………………………………….…………………………22
圖2-2-1 百分比問題的九種脈絡圖….……………………………………....30
圖4-2-1 相同未知數位置下各脈絡表現情形的折線圖.……………………75
圖4-3-1 比較量未知中各問題難度折線圖..................................………..….82
圖4-3-2 比值未知各問題難度折線圖...................................……………..…90
圖4-3-3 基準量未知各問題難度折線圖...............................……………......97
圖4-5-1 測驗分數百分比折線圖............................………………………...109
圖4-5-2 第1題選項分析長條圖..............................……………………......111
圖4-5-3 第2題選項分析長條圖...................................…………………….113
圖4-5-4 第3題選項分析長條圖......................................…………………..114
圖4-5-5 第4題選項分析長條圖......................................…………………..116
圖4-5-6 第5題選項分析長條圖......................................………………..…118
圖4-5-7 第6題選項分析長條圖......................................…………………..120
圖4-5-8 第7題選項分析長條圖......................................………………..…121
圖4-5-9 第8題選項分析長條圖......................................……………......…123
圖4-5-10 第9題選項分析長條圖....................................………………..…124
圖4-5-11 第10題選項分析長條圖..........................................………......…126
圖4-5-12 第11題選項分析長條圖..........................................………..........127
圖4-5-13 第12題選項分析長條圖..................................…………………..129
圖4-5-14 第13題選項分析長條圖...............................……………….........131
圖4-5-15 第14題選項分析長條圖.......................................………….........133
圖4-5-16 第15題選項分析長條圖..........................................………..…....135
圖4-5-17 第16題選項分析長條圖.............................………………….......137
圖4-5-18 第17題選項分析長條圖................................………………........139
圖4-5-19 第18題選項分析長條圖................................…………………....141
圖4-5-20 第19題選項分析長條圖...................................….........................142
圖4-5-21 第20題選項分析長條圖............................………………............144
圖4-5-22 第21題選項分析長條圖......................................……………......145
圖4-5-23 第22題選項分析長條圖....................................……......………..147
圖4-5-24 第23題選項分析長條圖.................................………………...…148
圖4-5-25 第24題選項分析長條圖.....................................…………….......150
圖4-5-26 第25題選項分析長條圖.............................……………………...151
圖4-5-27 第26題選項分析長條圖...........................…………………….....153
圖4-5-28 第27題選項分析長條圖................................…………………....155
中文部分:
九章出版社編輯部譯,克魯切茨基著(民82)。國中小學生數學能力心理學。台北市:九章出版社。
王佳文(民84)。國小六年級數學解未知數問題測驗之發展與學生在認知成份和錯誤組型之分析。國立台南師範學院國民教育研究所碩士論文(未出版)。
台灣省國民學校教師研習會(民82)。國民小學數學實驗課程教師手冊第十一冊。台北縣:台灣省國民學校教師研習會。
江南青(民72)。比例推理的錯誤診斷與補救。國立師範大學碩士論文(未出版)。
吳昭容(民79)。圖示對國小學童解數學應用問題之影響。國立台灣大學心理學研究所獨立研究(未出版)。
吳裕益(民86)。題目與測驗分析程式(ITAN第二版)簡介。測驗與輔導,144,頁2974~2981。
呂玉琴(民80)。分數概念:文獻探討。台北師院學報,第4期,頁573~606。
周淑惠(民84)。幼兒數學新論-教材教法。台北市:心理出版社。
周筱亭(民75)。75年度師專數學科教授座談會實錄。台北縣:板橋教師研習會。
周筱亭(民77)。77年度師專數學科教授座談會實錄。台北縣:板橋教師研習會。
林碧珍(民76)。數學教師應有的認識。國教世紀,第33期。
林碧珍(民78)。國小學生數學解題的表現及其相關因素的研究。國立台灣師範大學數學研究所碩士論文(未出版)。
林碧珍(民79)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第4期,頁295~347。
林碧珍(民80)。國小兒童對於乘除法應用問題之認知結構。新竹師院學報,5,頁211~288。
林福來(民73)。青少年的比例概念發展。科學教育月刊,第73期,頁7~26。
林福來、郭汾派、林光賢(民73)。國中生的比例概念發展。科教月刊,第87期,頁14~42。
林福來、郭汾派、林光賢(民75.8)。比例推理的錯誤診斷與補救。中華民國74年度科學教育學術研討會論文彙編。
邱淵等譯,Bloom. B. S.,Madaus. G. F. & Hastings. J. T.著(民78)。教學評量。台北市:五南圖書公司。
國立編譯館(民70)。國民小學數學教學指引第六冊。台北市:國立編譯館。
國立編譯館(民83)。國民小學數學教學指引第十一冊。台北市:國立編譯館。
國立編譯館(民84)。國民小學數學教學指引第十冊。台北市:國立編譯館。
張春興(民86)。教育心理學-三化取向的理論與實踐。台北市:東華書局。
張淑怡(民84)。加減問題之解題活動類型~一個國小低年級兒童的個案研究。國立高雄師範大學數學研究所碩士論文(未出版)。
張景媛(民83)。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報,27期,頁175~200。
教育部(民82)。國民小學課程標準。台北市:教育部。
許家驊(民83)。國小二年級學生改變型數學文字題錯誤偵測表現之研究。國立台南師範學院初等教育研究所碩士論文(未出版)。
郭生玉(民86)。心理與教育測驗。台北縣:精華書局。
陳英豪、吳裕益(民86)。測量與評量。高雄市:復文書局。
陳學志(民80)。簡單數學語句代數化之歷程研究。國立台灣大學心理研究所專題研究(未出版)。
曾惠敏(民87)。國小分數概念實作評量之發展及其相關研究。國立台南師範學院國民教育研究所碩士論文(未出版)。
黃湘武等(民73)。國中生質量守恆,重量守恆,外觀體積觀念與比例推理能力的抽樣調查研究。中等教育,36(1),頁44~65。
楊壬孝(民77)。國中小學生分數概念之發展。國科會研究計劃報告。
楊瑞智(民79)。四則運算的錯誤類型研究及教學上的應用。國教月刊,36卷,9、10期,頁18~25。
葉雪梅(民79)。國小兒童對「比較」類應用問題的解題行為。國立政治大學教育研究所碩士論文(未出版)。
歐瑞賢(民86)。國小學生比例推理能力動態評量之效益分析。國立台南師範學院國民教育研究所碩士論文(未出版)。
蔣治邦、鍾思嘉(民80)。低年級學童加減法概念的發展。教育心理與研究,14期,頁35~68。
鄭昭明(民79)。認知心理學與教學研究。載於國立台灣師範大學教育系主編,教學研究專集。台北市:南宏圖書公司。
鄭昭明、翁家英(民78)。國小兒童解數學應用問題的認知歷程。認知與學習基礎研究第三次研討會。行政院國家科學委員會。
謝毅興(民80)。國小兒童解數學應用問題的策略。國立台灣大學心理學研究所碩士論文(未出版)。
羅鴻翔譯(民69)。分數的數之發展。國教之友,第454~455期,頁36~41。
英文部分:
Ashlock, R. B.(1990). Error patterns in computation: Asemi-programmed approach(5th ed.). Columbus, Ohio: Merrill.
Barbara, R. S.& Delayne, H. M.(1984). Diagnosis and Remediation of Senstence-solving Error Patterns. Arithmetic Teacher, January, pp. 42~46.
Baxter, P.& Dole, S.(1990). Research supplement working with the brain, not against it: correction of systematic errors in subtraction. British Journal of Special Education, 17(1), pp. 19~22.
Behr, M. J,. Harel, G. Post, T., &Lesh, R.(1992). Rational number, ratio, and proportion. In D. A. Grouws(Ed.), Handbook of research on mathematics teaching learning(pp.296~333). New York: Macmillan.
Bell, A., Greer, B., Grimison. L., & Mangan, C.(1989). Children''s Performance on Multiplication Word Problems: Elements of a Descriptive Theory. Journal for Research for in Mathematics Educational, 20, pp.434-449.
Brown, G. W.,&Kinney, L. B.(1973). Let’s teach them about ratio. Mathematics Teacher, 66, pp.352~355.
Brown, M.(1981). Levels of understanding of Number Operation, place-Value and Decimals in Secondary School Child Pho. Thesis, University of London, Chelesea Colleage.
Brueckner, L. J.(1930). Diagnostic and remedial teaching in arithmetic. Philadelphian John C. Winston Company.
Butler, C. H.(1955). A note on teaching percentages. Mathematics Teacher, 48, pp.208.
Carpenter,T. P., Coburn, T. G., Reys, R.E., &Wilson, J. G.(1975). Results and implications of NAEP mathematics assessment: Elementary school. Arithmetic Teacher, 22. pp. 438~450.
Carpenter, T. P., Kepner, H., Corbitt, M. K., Lindquist, M. M.& Reys, R. E.(1980). Results and implications of NAEP mathematics assessment: Elementary school. Arithmetic Teacher, 27. pp. 10~12,44~47.
Cebulski, L. A.(1984). Children’s errors in subtraction: An investigation into casuses and remediation. (ERIC Document Reproduction Service No. ED243684).
Costa, S.(1991). Adolescents’ reasoning about percent. Paper presented at the annual meeting of the New England Educational Research Organization, Portsmouth. NH.
Davis, R. B.(1988). Is “Percent” a number?Journal of Mathematical Behavior, 7, pp299~302.
Dickson, L., Brown, M.&Gibson, O.(1984). Children Learning Mathematics: A Teacher’s Guide to Recent Research. HOLT. pp.274~284.
Edwards, A(1930). A study of error on percentage. In G. M. Whipple(Ed.), Twenty-ninth yearbook of the National Society for the Study of Education(pp.621~640). Bloomington, IL: Public Schools Publishing Company.
Engelhardt, J. M.(1982). Using computational errors in diagnostic teaching. Arithmetic Teacher, 29(8), pp.16~19.
Fischbein, E., Deri. M., Nello, M. S.,&Marino, M. S.(1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, pp.3~17.
Gal, I.(1993). Issues and challenges in adult numeracy(Technical Report No. TR93~15). Philadelphia: University of Pennsylvania, National Center on Adult Literacy.
Glaser, R. L.(1962). Psychology and instructional technogy. In R. L. Glaser(Ed.), Training Research and Education(pp.559~578). Pittsburgh’PA: University of Pittsburgh Press.
Ginsburg, H. P.(1987). Assessing arithmetic. In D. D. Hammill(Ed.)Assessing the abilities and instructional needs of students(pp.412~503). Austin, Texas: PRO-ED.
Ginsburg, L., Gal, I. &Schuh, A.(1995). What does “100﹪”juice mean?Exploring adult learners’ informal knowledge of percent. Office of educational reach and improvement(ED),Washington, DC.ED396154.
Gunderson, A. G.(1955). Thought-Patterns of Young Children in Learning Multiplication and Division. Elementary School Journal 155, pp.453~461.
Heller, J. I. &Greeno, J. G.(1978). Semantic processing in arithmetic word problem solving. Paper presented at the Midwestern Psychological Association Covention, Chicago, May.
Hibbard, W.(1995). An approach to per cents. Arithmetic Teacher, 2, pp.128.
Hiebert, J.,&Tonnessen, L. H.(1978). Development of the fraction concept in two physical contexts: an exploratory investigation. Journal for Research in Mathematics Education, 9(5), pp.374~378.
Hinsley, D. A., Hayes, J. R., & Simon, H. A.(1977). From words to equations: Meaning and representation in algebra word problems. In M. A. Just, & P. A. Carpenter(Eds.), Cognitive processes in comprehension(pp.135~148). Beverly Hills, CA: Sage.
Hunting, R. P.(1986). Rachel’s schemes for constructing fraction knowledge. Educational Studies in Mathematics, pp.49~66.
Joram, E., Raghavan, K., &Resnick, L. B.(1992). Children’s reasoning about percents in everyday texts. Paper presented at the annual meeting of the American Educational Research Association , San Francisco, CA.
Karplus, R., Pulos, S., &Stage, E. K.(1980). Early Adolescents’ Structure of Proportional Reasoning. In Proceedings of the fourth International Conference for Psychology of Mathetics Education, Berkiliy, California, pp136~142.
Kerslake, D.(1986). Children’s Perceptions of Fractions. The Tenth International Conference for the Psychology of Mathematics Education.
Kieren, T. E.(1976). Onthe mathematical cognitive, and instruction foundations of national numbers. In R. A. Lesh(Ed)number and measurement, columbus, Ohio, ERIC.
Kinney, L. B.(1958). Teaching percentage for understanding and use. Mathematics Teacher, 51, pp.38~41.
Kintsch, W. , &Greeno, J.(1985). Understanding and solving word arithmetic problems. Psychological Review, 92. PP.109~129.
Kircher, H. W.(1926). Study of percentage in Grade VIII A. Elementary School Journal, 26, pp.281~289.
Kirsch, I. S., Jungeblut, A., Jenkins, L., &Kolstad, A.(1993).Adult literacy in America: A first look at the results of the National Adult Literacy Survey. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
Kouba, V. L., Brown, C. A., Carpenter, T. P., Lindquist, M. M., Silver, E. A.,& Swafford, J. O.(1988). Results of fourth NAEP assessment of mathematics: Number, operations, and word problems. Arithmetic Teacher, 35, pp.14~19.
Leinhardt, G.(1988).Getting to know: Tracing students’ mathematical knowledge from intuition to competence. Educational Psychologist, 23(2), pp.119~144.
Lembke, L. O.(1991). The development of concepts and strategies used in solving percent problem(Doctoral dissertation, University of Missouri-Columbia, 1991). Dissertation Abstracts International, 52(06), pp.2057A.
Lembke, L. O.&Reys, B. J.(1994). The development of, and interaction between, intuitive and school-taught ideas about percent. Journal for research in Mathematics Education, 25(3), pp.237~259.
Leslow, S.& Smock, C. D.(1970). Developmental changes in problem-solving strategies: Permutation. Development Psychology, 2, pp. 412~422.
MacGregor, M., & Stacey, K.(1993). Cognitive models underlying students’ formulation of simole linear equations.
Mack, N. K.(1990). Learning fractions with understanding: Building on informal knowledge. Journal for Research in Mathematics Education, 21(1), pp.16~32.
Mayer, R. E.(1987). Educational psychology: cognitive approach. pp. 345~373, Boston: Little, Brown, & Company.
McCown, R., Driscoll, M., & Roop, P. G.(1996). Educational Psychology(2nd Edition). Needham Heights, MA: Allyn & Bacon.
McGivney, R.J., &Nischke, J.(1988). Is-of, a mnemonic for percentage problems. Mathematics Teacher, 81, pp.455~456.
Montgomery, C. R.(1958). An investigation of the learning of the three cases of percentage in arithmetic(Doctoral dissertation, State University of Iowa, 1958).Dissertation Abstracts International, 19(7), pp.1676~1677.
Mullis, I. V., Dossey, J. A., Owen, E. H.,&Phillips, G. W.(1991). The stste of mathematics achievement: NAEP’s 1990 Assessment of the nation and the trial assessment of the states. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
National Council of Teachers Mathematics(1990). Curriculum and evaluation standard for school mathematics(3rd ed.). Reston, VA: National Council of Teachers Mathematics, Inc.
National Council of Teachers Mathematics(1989). Curriculum and evaluation standard for school mathematics. Reston, VA: Author.
National Council of Teachers Mathematics(1991). Curriculum and evaluation standard for school mathematics;Addenda series, Kindergarten Book. Reston, VA: National Council of Teachers Mathematics, Inc.
Neimark, E. D.& Lewis, N.(1967). The development of logical problem-solving strategies. Child Development, 38, pp.107~177.
Neimark, E. D.& Lewis, N.(1968). Development of logical problem-solving: A one year retest. Child Development, 39, pp.527~536.
Nelson, J.(1969). Percent : A rational number or a ratio. Mathematics Teacher, 16, pp.105~109.
Nesher, P., Greeno, J. G.,&Riley, M. S.(1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics. 13, pp.373~394.
Noelting, G.(1980a). The development of proportional reasoning and the ratio concept :Part I-Differentiation of stages. Educational Studies in Mathematics, 11, pp.217~253.
Noelting, G.(1980a). The development of proportional reasoning and the ratio concept :Part II-Problem structure at successive stages: problem solving strategies and the mechanism of adaptative restructuring. Educational Studies in Mathematics, 11, pp.331~363.
Nunes, T., Schliemann, A. D., &Carraher, D. W.(1993). Street mathematics and school mathematics. New York: Cambridge University Press.
Ohlsson, S.(1988). Mathematical meaning and applicational meaning in the semantics of fractions and related concepts. In M. Behr&J. Hiebert(Eds.) Number concepts and operations in the middle grades(pp.53~92).Reston, VA: Erlbaum.
Parker, M.(1994). Instruction in percent: Moving prospective teachers under procedures and beyond conversion(Doctoral dissertation, University of Pittsburgh, 1994). Dissertation Abstracts International, 55(10), pp.3127A.
Parker, M. &Leinhardt, G.(1995). Percent : A Privileged Proportion. Review of Educational Research, 65(4), pp.421~481.
Payne, J. N.,&Allinger, G. D.(1984). Insights into teaching percent to general mathematics students. Unpublished manuscript, Montana State University, Department of Mathematical Sciences, Bozeman.
Piaget, J., Inhelder, B.,&Szeminska, A.(1960).The Child’s Conception of Geometry. London: Routledge and Kegan Paul.
Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method. New Jersey:Prineeton University Press
Resnick, L. B.(1986). The development of mathematical intuition. In M. Perlmutter(Ed.). perspectives on intellectual development: The Minnesota symposia on child psychology(Vol.19, pp.159~194). Hillsdale, NJ:Lawrence Erlbaum Associates.
Resnick, L. B.& Ford, W. W.(1984). The Psychology of Mathematics for Instruction. Hillsdale, N. J. :Eribaum.
Riley, M. S., Greeno, J.G.,&Heller, J. I.(1983). Development of children’s problem-solving ability in arithmetic. In H. Ginsburg(Ed.)The development of mathematical thinking(pp.153~196). New York: Academic Press.
Risacher, B. F.(1992). Knowledge growth of percent during the middle school years(Doctoral dissertation, University of Delaware, 1992). Dissertation Abstracts International, 54(03),pp.853A.
Schwartz, J. L.(1988). Intensive quantity and reference transforming arithmetic operations. In J. Hiebert&M. Behr(Eds.)Number concepts and operations in the middle grades(pp.41~52). Hillsdale, NJ: Erlbaum.
Streefland, L.(1978).Some Observational Result Concerning the Mental Constitution of the Concept of Fraction. Educational Studies in Mathematics, pp.51~73.
Streefland, L.&van den Heuvel-Panhuizen, M.(1992). Evoking pupils’ informal knowledge on percents. In W. Geeslin&K. Graham(Eds.), Proceedings of the sixteenth Psychology in Mathematics Education conference(Vol.3, pp.51~57). Durham: University of New Hampshire.
Usiskin, Z.,&Bell, M. S.(1983). Applying arithmetic: A handbook of applications of arithmetic: Part I. Numbers. Chicago, IL: University of Chicago Arithmetic and Its Applications Project.
Van Engen, H.(1960). Rate pair, fractions, and rational numbers, Mathematics Teacher,7, pp.389~399.
Van Lehn, K.(1983). On the representation of procedure in repair theory. In H. P. Ginsberg(Eds.) The Development of Mathematical Thinking. Pp. 201~252.
Venezky, R. L.,&Bregar, W. S.(1988). Different levels of ability in solving mathematical word problem. Journal of Mathematical Behavior, 7, pp111~134.
Volpel, M. C.(1954). Solving percentage problems by the equation method. Mathematics Teacher, 47, pp.425~427.
Wearne. D., &Hiebert, J.(1988). Constructing and using meaning for mathematical symbols: The case of decimal fractions. In J. Hiebert&M. Behr(Eds.), Number concepts and operations in the middle grades(Vol.2, pp.220~235). Reston, VA: national Council of Teachers of Mathematics.
Weibe, J. H.(1986). Manipulating percentages. Mathematics Teacher, 79. pp.23~26.
William, H. N.(1990). Teaching Equations. Arithmetic Teacher, November. pp.48~51.
Zweng, M. J. Division problems and the concept of rate. Arithmetic Teacher, 11, pp.547~556.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top