|
參考文獻 1. 陳正宗、洪宏基,"邊界元素法",第二版,新世界出版社,台北,臺灣 (1992)。 2. 林聰悟、林佳慧,"數值方法與程式",初版,圖文技術服務有限公司,台北,臺灣 (1997)。 3. 陳義麟、陳正宗、梁明德、李洋傑,"外域Helmholtz方程虛擬頻率問題之探討",第二十屆海洋工程研討會, 國立台灣海洋大學,基隆 (1998)。 4. Burton, A. J. and Miller, G. F., The Application of Integral Equation Methods to Numerical Solution of Some Exterior Boundary Value Problem, Proc. R. Soc. London Ser A, Vol. 323, pp. 201-210 (1971). 5. Chen, J. T., On Fictitious Frequencies Using Dual Series Representation, Mechanics Research Communications, Vol. 25, No. 5, pp. 529-534 (1998). 6. Liou, D. Y., Chen, J. T. and Chen, K. H., A New Method for Determining the Acoustic Modes of a Two-dimensional Sound Field, J. Chinese Inst. Civ. Hydr. Engng., Accepted, (1999) (in Chinese). 7. Benthien, G. W. and Schenck, H. A., Nonexistence and Nonuniqueness Problems Associated with Integral Equation Method in Acoustic, Computation and Structure 65, 295-305 (1997). 8. Huang, I. T. and Fan, C. N., Combined Boundary Integral Equation and Null Field Equation Method for Hydrodynamic Effects of Two Dimensional Exterior Wave Problem in Proceedings of the Institute of Mechanical Engineering, Imech Publ. (1991). 9. Goldberg, J. L., Matrix Theory with Application, McGraw-Hill, INC., New York, (1991). 10. Chen, J. T. and Wong, F. C., Dual Formulation of Multiple Reciprocity Method for the Acoustic Mode of a Cavity with a Thin Partition, J. of Sound and Vibration, 217(1), 75-95 (1998). 11. Chen, J. T., Chen, I. L. and Liang, M. T., On the Irregular Eigenvalues in Wave Radiation Solutions Using Dual Boundary Element Method, ISOPE-99, Brest, France (1999). 12. Chen, J. T., Huang, C. X. and Chen, K. H., Determination of Spurious Eigenvalues and Multiplicities of True Eigenvalues Using the Real-part Dual BEM, Comput. Mech., Accepted, (1999). 13. Chen, J. T., Huang, C. X. and Wong, F. C., Determination of Spurious Eigenvalues and Multiplicities of True Eigenvalues in the Dual Multiple Reciprocity Method Using the Singular Value Decomposition Technique, J. Sound Vib., Accepted, (1999). 14. Jackson, J. D., Classical Electrodynamics, John-Wiley & Sons, New York, N. Y. 15. Lee, C.-H. and Sclavounos, P. D., Removing the Irregular Frequencies from Integral Equations in Wave-body Interactions, J. Fluid Mech., Vol. 207, pp. 393-418 (1989). 16. Martin, P. A., On the Null-Field Equations for the Exterior Problems of Acoustic, Q. J. Mech., Vol. 27, pp. 386-396 (1980). 17. Juhl, P., A Numerical Study of the Coefficient Matrix of the Boundary Element Method near Characteristic Frequencies, J. Sound Vib. 175(1), 39-50 (1994). 18. Rezayat, M., Shippy, D. J. and Rezayat, M., On Time Harmonic Elastic-Wave Analysis by the Boundary Element Method, Comp. Meth. Appl. Mech. Engng. , Vol. 55, pp. 349-367 (1986). 19. Rizzo, F. J., Shippy, D. J. and Rezayat, M., Boundary Integral Equation Analysis for a Class of Earth-Structure Interaction Problems, Final Project Report for NSF Research Grant CEE-8013461 (1985). 20. Schenck, H. A., Improved Integral Formulation for Acoustic Radiation Problem, J. Acoust. Soc. Am., Vol. 44, pp. 41-58 (1968). 21. Seybert, A. F. and Rengarajan, T. K., The Use of CHIEF to Obtain Unique Solutions for Acoustic Radiation using Boundary Integral Equations, J. Acoust. Soc. Am., Vol. 81, No. 5, pp. 1299-1306 (1989). 22. SYSNOISE-User Manual, Numerical Integration Technology, Leuven, Belgium (1989). 23. Shaw, R. P., Boundary Integral Equation Methods Applied to Wave Problem, Chapter 6, in Developments in Boundary Element Methods, Vol. 2, edited by Banerjee, P. K. and Shaw, R. P., pp. 121-153 (1979). 24. Poulin, S., A Boundary Element Model for Diffraction of Water Waves on Varying Water Depth, Ph.D. dissertation of Department of Hydrodynamics and Water Resources Technical University of Denmark, ISVA Series Paper No 64, ISSN 0107-1092, Lyngby (1997). 25. Wu, T. W. and Seybert, A. F., A Weighed Residual Formulation for the CHIEF Method in Acoustics, J. Acoust. Soc. Am., Vol. 90, No. 3, pp. 1608-1614.(1991). 26. Yieh, W., Chang, J. R., Chang, C. M. and Chen, J. T., Applications of Dual MRM for Determining the Natural Frequencies and Natural Modes of a Rod Using the Singular Value Decomposition Method, Advances in Engineering Software, Accepted, (1999). 27. Yieh, W., Chen, J. T. and Chang, C. M., Applications of Dual MRM for Determining the Natural Frequencies and Natural Modes of an Euler-Bernoulli Beam Using the Singular Value Decomposition method, Engineering Analysis with Boundary Elements, Accepted, (1998).
|