跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱皖山
研究生(外文):WonShan Ju
論文名稱:以解析及數值實驗探討積分方程解外域問題CHIEF的方法
論文名稱(外文):Analytical Study and Numerical Experiments for Exterior Problem using CHIEF Method
指導教授:梁明德
指導教授(外文):MingTe Liang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:54
中文關鍵詞:奇異積分方程超強奇異積分方程虛擬頻率CHIEFSVD
外文關鍵詞:singular equationhypersingular equationfictitious frequencyCHIEFSVD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
積分方程用於解外域聲場Helmholtz問題由來已久。如果單單使用奇異積分方程(UT式)或超強奇異積分方程(LM式)會產生虛擬頻率的非物理現象。CHIEF(Combined Helmholtz Interior integral Equation Formulation)法因易於使用而受到歡迎,可以克服外域虛擬頻率的問題;但是如果內域點配置不當則會導致失效,此為一般所謂節點的位置。CHIEF法結合SVD(Singular Value Decomposition)技巧可以更有效率的過濾虛擬頻率,唯SVD只能處理實數,在計算時必須先將複數係數矩陣轉化為實數係數矩陣以方便處理。在文章中先分析探討虛擬頻率發生的機制,而後以二維圓柱為數值範例,明確指出徑向、幅向節點線的所在位置,也就是失敗點所在的位置。

Integral equation has been used to solve exterior acoustic problems (radiation and scattering) for many years. It is well know that fictitious (irregular) frequencies stem from the numerical resonance instead of the physical resonance if integral representation for the solution is assumed. It is found that if the singular (UT) or the hypersingular (LM) equation is used alone results in fictitious frequencies for exterior problem. The CHIEF (Combined Helmholtz Integral Equation Formulation) method is a very popular technique that can overcome the nonunique problem but this method breaks down if the internal points are not properly chosen. The CHIEF method in conjunction with the SVD (Singular Value Decomposition) technique is easy and efficient to have a unique solution for the exterior problem. An analytical example for the fictitious frequencies of a circular cavity is studied. The optimum numbers and proper positions for the points in the interior domain are analytically studied and suggested in the numerical scheme. Also, numerical experiments are designed to verify the analytical results. Finally, we can get the exact positions of nodal lines; i.e. the additional failure interior points positions. Thus, if the additional points are properly chosen, there are no more than two points are needed.

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅳ
圖目錄 Ⅴ
第一章 緒論
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
1.4 研究內容 2
第二章 虛擬頻率發生之原因與解決方法
2.1 虛擬頻率發生之原因 3
2.2 解決虛擬頻率的方法 3
2.3 對偶邊界積分方程之理論推導 4
2.4 CHIEF法之理論推導 10
第三章 CHIEF方法結合SVD技巧在二維外域
Helmholtz場聲學問題 13
第四章 CHIEF失敗點之分析研究
4.1 間接法奇異積分方程 16
4.2 超強奇異積分方程 22
第五章 數值範例 29
第六章 結論 31
參考文獻 52

參考文獻
1. 陳正宗、洪宏基,"邊界元素法",第二版,新世界出版社,台北,臺灣 (1992)。
2. 林聰悟、林佳慧,"數值方法與程式",初版,圖文技術服務有限公司,台北,臺灣 (1997)。
3. 陳義麟、陳正宗、梁明德、李洋傑,"外域Helmholtz方程虛擬頻率問題之探討",第二十屆海洋工程研討會, 國立台灣海洋大學,基隆 (1998)。
4. Burton, A. J. and Miller, G. F., The Application of Integral Equation Methods to Numerical Solution of Some Exterior Boundary Value Problem, Proc. R. Soc. London Ser A, Vol. 323, pp. 201-210 (1971).
5. Chen, J. T., On Fictitious Frequencies Using Dual Series Representation, Mechanics Research Communications, Vol. 25, No. 5, pp. 529-534 (1998).
6. Liou, D. Y., Chen, J. T. and Chen, K. H., A New Method for Determining the Acoustic Modes of a Two-dimensional Sound Field, J. Chinese Inst. Civ. Hydr. Engng., Accepted, (1999) (in Chinese).
7. Benthien, G. W. and Schenck, H. A., Nonexistence and Nonuniqueness Problems Associated with Integral Equation Method in Acoustic, Computation and Structure 65, 295-305 (1997).
8. Huang, I. T. and Fan, C. N., Combined Boundary Integral Equation and Null Field Equation Method for Hydrodynamic Effects of Two Dimensional Exterior Wave Problem in Proceedings of the Institute of Mechanical Engineering, Imech Publ. (1991).
9. Goldberg, J. L., Matrix Theory with Application, McGraw-Hill, INC., New York, (1991).
10. Chen, J. T. and Wong, F. C., Dual Formulation of Multiple Reciprocity Method for the Acoustic Mode of a Cavity with a Thin Partition, J. of Sound and Vibration, 217(1), 75-95 (1998).
11. Chen, J. T., Chen, I. L. and Liang, M. T., On the Irregular Eigenvalues in Wave Radiation Solutions Using Dual Boundary Element Method, ISOPE-99, Brest, France (1999).
12. Chen, J. T., Huang, C. X. and Chen, K. H., Determination of Spurious Eigenvalues and Multiplicities of True Eigenvalues Using the Real-part Dual BEM, Comput. Mech., Accepted, (1999).
13. Chen, J. T., Huang, C. X. and Wong, F. C., Determination of Spurious Eigenvalues and Multiplicities of True Eigenvalues in the Dual Multiple Reciprocity Method Using the Singular Value Decomposition Technique, J. Sound Vib., Accepted, (1999).
14. Jackson, J. D., Classical Electrodynamics, John-Wiley & Sons, New York, N. Y.
15. Lee, C.-H. and Sclavounos, P. D., Removing the Irregular Frequencies from Integral Equations in Wave-body Interactions, J. Fluid Mech., Vol. 207, pp. 393-418 (1989).
16. Martin, P. A., On the Null-Field Equations for the Exterior Problems of Acoustic, Q. J. Mech., Vol. 27, pp. 386-396 (1980).
17. Juhl, P., A Numerical Study of the Coefficient Matrix of the Boundary Element Method near Characteristic Frequencies, J. Sound Vib. 175(1), 39-50 (1994).
18. Rezayat, M., Shippy, D. J. and Rezayat, M., On Time Harmonic Elastic-Wave Analysis by the Boundary Element Method, Comp. Meth. Appl. Mech. Engng. , Vol. 55, pp. 349-367 (1986).
19. Rizzo, F. J., Shippy, D. J. and Rezayat, M., Boundary Integral Equation Analysis for a Class of Earth-Structure Interaction Problems, Final Project Report for NSF Research Grant CEE-8013461 (1985).
20. Schenck, H. A., Improved Integral Formulation for Acoustic Radiation Problem, J. Acoust. Soc. Am., Vol. 44, pp. 41-58 (1968).
21. Seybert, A. F. and Rengarajan, T. K., The Use of CHIEF to Obtain Unique Solutions for Acoustic Radiation using Boundary Integral Equations, J. Acoust. Soc. Am., Vol. 81, No. 5, pp. 1299-1306 (1989).
22. SYSNOISE-User Manual, Numerical Integration Technology, Leuven, Belgium (1989).
23. Shaw, R. P., Boundary Integral Equation Methods Applied to Wave Problem, Chapter 6, in Developments in Boundary Element Methods, Vol. 2, edited by Banerjee, P. K. and Shaw, R. P., pp. 121-153 (1979).
24. Poulin, S., A Boundary Element Model for Diffraction of Water Waves on Varying Water Depth, Ph.D. dissertation of Department of Hydrodynamics and Water Resources Technical University of Denmark, ISVA Series Paper No 64, ISSN 0107-1092, Lyngby (1997).
25. Wu, T. W. and Seybert, A. F., A Weighed Residual Formulation for the CHIEF Method in Acoustics, J. Acoust. Soc. Am., Vol. 90, No. 3, pp. 1608-1614.(1991).
26. Yieh, W., Chang, J. R., Chang, C. M. and Chen, J. T., Applications of Dual MRM for Determining the Natural Frequencies and Natural Modes of a Rod Using the Singular Value Decomposition Method, Advances in Engineering Software, Accepted, (1999).
27. Yieh, W., Chen, J. T. and Chang, C. M., Applications of Dual MRM for Determining the Natural Frequencies and Natural Modes of an Euler-Bernoulli Beam Using the Singular Value Decomposition method, Engineering Analysis with Boundary Elements, Accepted, (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top