(54.236.58.220) 您好!臺灣時間:2021/03/06 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉俊彬
研究生(外文):Chun-Bin Liou
論文名稱:含裂縫柱承受部份跟隨力的彈性穩定分析
論文名稱(外文):Elastic stability of cracked columns subjected to a partially follower force
指導教授:曹登皓曹登皓引用關係
指導教授(外文):Deng-How Tsaur
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:114
中文關鍵詞:裂縫柱彈性穩定發散型態顫振型態裂縫深度比率切向係數部份跟隨力
外文關鍵詞:cracked columnelastic stabilitydivergence-typeflutter-typecrack ratiotangency coefficientpartially follower force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文應用動態分析方法輔以等高線技巧,來探討含非延伸性張開型
裂縫之$Bernoulli-Euler$ $column$,在材料遵循虎克定律下,承受到
部份跟隨力作用時,切向係數、裂縫深度、裂縫位置、邊界條件及彈性
束制等參數,對其臨界不穩定機構和臨界挫曲負荷的影響。從各種參數變化狀況下,我們觀察到在非保守系統時,隨著切向係數的增加,使得臨界不穩定機構由發散型轉變到顫振型,同理可說,增加切向係數一般能夠增加臨界挫曲負荷值;倘若切向係數繼續增加,則臨界不穩定機構又由顫振型到發散型,其臨界挫曲負荷值將跟隨切向係數增加而減小;在保守系統時,切向係數則不影響臨界挫曲負荷值。對於裂縫深度的影響,除了一些比較深的裂縫會因為材料強度之改變,非線性因素的存在,造成臨界挫曲負荷值增加之外,其餘皆會隨裂縫深度的增加而遞減。而對於保守系統下,裂縫的位置愈靠近束制性支承或自由端時,其臨界挫曲負荷值的強度愈大,反之則愈小,並且關於束制性較強的邊界支承,其不同裂縫深度造成臨界挫曲負荷值之減少量,有比較小的下降趨勢。

This essay, based on the dynamic or kinetic approach and contour method, is dedicated to the study of the influence of the tangency coefficient, the depth of the crack, the location of the crack, the boundary conditions and the elastic restraints on the critical instability mechanism and critical buckling load of the Bernoulli-Euler column of the nonpropagating open cracks, whose material is subject to Hooke's law, which undertake the partially follower force. Firstly, by means of characteristic curves diagrams with changes in parameters, we notice that as the tangential coefficient increases, the nonconservative system makes the critical instability mechanism transform form divergence to flutter; also, the increase in tangential coefficient results in the increase of the value of the critical buckling load. If tangential coefficient keeps increasing and critical instability mechanism transforms from flutter to divergence, the value of the critical buckling load will decrease. However, the value of the critical buckling load won't be affected by the tangential coefficient when it is under conservative systems. Secondly, as for the effect of the depth of the crack, the value of the critical buckling load will increase when some deeper cracks are with the changes in the flutter instability. Otherwise, the value of the critical buckling load will decrease as the depth of crack increases. Thirdly, the closer the ( nonpropagating single sided and the pair of double sided open ) crack approaches the constrained support and/or free end, the greater the value of the critical buckling load. On the contrary, the value of the critical buckling load diminishes. Last but not least, as for the effect of the boundary conditions, the more strongly constrained support leads to less diminution of the value of the critical buckling load which results from different crack depth.

摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 x
符號說明 xi
第一章 緒論 1
1 - 1 前言 1
1 - 2 文獻回顧 4
第二章 理論分析 7
2 - 1 裂縫柱的柔度矩陣 7
2 - 2 裂縫柱的彈性行為 11
2 - 3 控制方程式與邊界條件 14
2 - 4 特徵方程式與探討的問題 16
第三章 結果分析與討論 23
3 - 1 驗證比較 23
3 - 2 結果與討論 23
第四章 結論 35
參考文獻 37
附表 40
附圖 42
附錄I:矩陣F的元素 112

1. H. Liebowitz, H. Vanderveldt and D. W. Harris, "Carrying
capacity of notched columns", International Journal Solids and Structures, Vol.3, pp.489~500, (1967).
2. H. Liebowitz and W. D. S. Claus, Jr., "Failure of notched
columns", Engineering Fracture Mechanics, Vol.1, pp.379~383, (1968).
3. H. Okamura, H. W. Liu, C. S. Chu and H. Liebowitz, "A cracked column under compression", Engineering Fracture
Mechanics, Vol.1, pp.547~564, (1969).
4. B. S. Haisty, and W. T. Springer, "A general beam element
for use in damage assessment of complex structures", Journal
of Vibration Acoustics, Stress, and Reliability in Design,
Vol.110, pp.389~394, (1988).
5. P. F. Rizos, N. Anifantis and A. D. Dimarogonas,
"Identification of crack location and magnitude in a
cantilever beam from the vibration modes", Journal of Sound
and Vibration, Vol.138, No.3, pp.381~388, (1990).
6. H. P. Lee and T. Y. Ng, "Natural frequencies and modes for
the flexural vibration of a cracked beam", Applied Acoustics, Vol.42, pp.151~163, (1994).
7. T. G. Chondros and A. D. Dimarogonas, "Identification of
cracks in welded joints of complex structures", Journal
of Sound and Vibration, Vol.69, No.4, pp.531~538, (1980).
8. A. D. Dimarogonas and G. Massouros, "Torsional vibration
of a shaft with a circumferential crack", Engineering Fracture Mechanics, Vol.14, No.3$\sim$4 pp.439~444, (1981).
9. C. Sundararajan, "Influence of an elastic end support on the
vibration and stability of Beck's column", International
Journal of Mechanical Sciences, Vol.18, pp.239~241, (1976).
10. S. Y. Lee and K. C. Hsu, "Elastic instability of beams
subjected to a partially tangential force", Journal
of Sound and Vibration, Vol.186, No.1, pp.111~123, (1995).
11. N. Anifantis and A. D. Dimarogonas, "Stability of columns with a single crack subjected to follower and vertical loads", International Journal Solids and Structures, Vol.19, No.4, pp.281~291, (1983).
12. C. -G. Gustafson, Discussion on Paris and Tada "The stress
intensity factors for cyclic reversed bending of a single
edge cracked strip including crack surface interferense",
International Journal of Fracture, Vol.12, pp.460~461,
(1983).
13. S. P. Timoshenko and J. M. Gere, "Theory of elastic
stability", McGraw-Hill, New York, 2d ed, (1961).
14. A. Chajes, "Principles of structural stability theory",
Prentice-Hall. Inc., Englewood Cliffs, New Jersey, (1974).
15. W. F. Chen and E. M. Lui, "Structural stability theory and
implementation", Wei Ming, Taipei, Taiwan, 3d ed, (1987).
16. 陳惠發,樑柱分析與設計,科技圖書股份有限公司,臺北,(1994)
17. V. V. Bolotin, "Nonconservative problems of the theory of
elastic stability", Pergamon press, New York, (1963).
18. A. D. Dimarogonas and S. A. Paipetis, "Analytical methods
in rotor dynamics", Elsevier Applied Science,London, (1983).
19. W. Mcguire and R. H. Gallagher, "Matrix structural analysis", John Wiley, New York, 3d ed, (1970).
20. S. P. Timoshenko and J. N. Goodier, "Theory of elasticity"
, McGraw-Hill, New York, 3d ed, (1970).
21. 錢偉長,彈性力學,亞東書局,台北,(1991)
22. T. L. Anderson, "Fracture mechanics fundamentals and
applications", CRC Press, Boca Raton, 2d ed, (1995).
23. 沈成康,斷裂力學,同濟大學出版社,上海,(1996)
24. B. David, "Elementary engineering fracture mechanics"
, NICT, Taipei, 4d ed, (1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔