跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭安
論文名稱:基樁於黏彈性土壤中之潛變挫曲初步分析
指導教授:林三賢林三賢引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:69
中文關鍵詞:潛變挫曲黏彈性
相關次數:
  • 被引用被引用:1
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
基樁受軸力長時間作用下,會產生側向持續變形行為,因此假若基樁之長細比過大,且基樁周圍土壤因潛變變形造成土壤剪力強度降低,不能提供足夠的剪力強度時,則有可能導致基樁潛變挫曲破壞。
由於基樁之潛變挫曲為動態行為,因此本文利用基樁受軸力與土壤互制之動態運動方程式,考慮基樁可能為鉸接或其他型式之邊界條件,並將樁體考慮為線彈性材料,而土壤以彈簧(Spring)及阻尼(Damping)組合之黏彈性模式來模擬,探討彈性基樁埋置於黏彈性土壤中,其受軸向力作用之下,基樁之潛變挫曲載重及樁身隨時間歷時變形的關係。利用拉普拉斯轉換(Laplace Transform),可求出土壤考慮潛變後之楊氏模數或地盤反力模數及基樁之潛變挫曲載重。此外,基樁受軸力作用隨時間產生的側向變形,則利用動態觀念來分析。
本研究分析方法配合Kuppusamy et al. (1969)研究成果,與前人研究所得之實驗結果比較,研究成果顯示,利用本方法推估之潛變挫曲載重與實驗值接近,其值低於彈性挫曲載重而高於單一柱挫曲載重;由於基樁在長時間外力作用下之實驗數據較少,故未來仍須與更多實驗結果進行分析比較,作為本研究之佐證。

第一章 緒論……………………………………………………….. 1
1-1研究動機…………………………………………… 1
1-2研究方法…………………………………………….. 1
1-3論文內容…………………………………………….. 2
第二章 文獻回顧…………………………………………………. 3
2-1挫曲理論…………………………………………….. 3
2-2黏土潛變行為……………………………………….. 8
2-3黏土潛變法則……………………………………….. 9
2-4潛變造成土壤強度降低的原因…………………….. 11
2-5土壤參數…………………………………………….. 12
第三章 理論推導…………………………………………………. 14
3-1黏彈性材料組成律………………………………….. 14
3-2潛變柔度函數與鬆弛模數………………………….. 18
3-3核函數……………………………………………….. 19
3-4基樁受軸向力與土壤互制運動方程式…………….. 20
3-5基樁潛變挫曲載重之推導………………………….. 21
3-5-1水平地盤反力係數為常數者…………………. 21
3-5-2水平地盤反力係數呈線性變化者……………. 24
3-6變形量探討………………………………………….. 25
3-6-1正確解………………………………………….. 26
3-6-2近似解………………………………………….. 27
第四章 數值分析…………………………………………………. 29
4-1彈性挫曲分析……………………………………….. 29
4-2潛變挫曲分析……………………………………….. 30
4-3不同邊界條件對潛變挫曲載重之影響…………….. 31
4-4基樁變形參數探討………………………………….. 33
第五章 結論與建議………………………………………………. 35
5-1結論………………………………………………….. 35
5-2建議………………………………………………….. 36
參考文獻…………………………………………………………….. 37

參考文獻
1.Bergfelt, A. (1957), "The Axial and Lateral Load Bearing Capacity, and Failure by Buckling of Piles in Soft Clay," Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, England.
2.Bowles, J. E.(1975), "Analytical and Computer Method in Foundation Engineering," McGraw-Hill Book, Inc.
3.Clough, R, W., and Penzien, J. (1964), Dynamic of Structure, McGraw-Hill Book, Inc., 2nd Ed.
4.Davisson, M. T., and Robinson K. E. (1965), "Bending and Buckling of Partially Embedded Piles," Procd., Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Canada.
5.Dost, S., and Glockner. P. G. (1982), "On The Dynamic Stability of Viscoelastic Perfect Columns," Int. Journal Solids Structures Vol. 18, No. 7, pp.587-596.
6.Fl gge, W. (1967), Viscoelasticity, 2nd ed., Springer-Verlag, Berlin, W. Germany.
7.Gabr, M. A., Wang, J. J., and Zhao, M. (1997), "Buckling of Piles With General Power Distribution of Lateral Subgrade Reaction," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.2, pp.123-130.
8.Gabr, M. A., and Wang, J. J. (1994), "Buckling of Friction Piles Supporting Bridge Foundations," TRR 1447, Washington D.C., pp.93-101.
9.Golder, H. G., and Skipp, B. O. (1957), "The Buckling of Piles in Soft Clay," Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, England.
10.Granholm, H. (1929), "On The Elastic Stability of Piles Surrounded by a Supporting Medium," Handlingar Ingeniars Vetenskaps Akademien, Stockholm, Sweden.
11.Hetenyi, M. (1946), Beams On Elastic Foundation, The University of Michigan Press, Ann Arbor.
12.Hoadley, P. J., Francis, A. J., and Stevwns, L. J. (1969), "Load Testing of Slender Steel Piles in Soft Clays," Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, vol.2, pp.123-130.
13.Kuppusamy, T., and Buslov, A. (1987), "Elastic-Creep Analysis of Laterally Loaded Piles," Journal of Geotechnical Eng., ASCE, Vol. 113, No.4, pp.351-365.
14.Leu, L. T., and Yang, Y. B. (1989), "Viscoelastic Stability of Column on Continuous Support," Journal of Engineering Mechanics, ASCE, Vol. 15, No. 7, pp.1488-1499.
15.Mitchell, J. K. (1993), Fundamental of Soil Behavior, John Wiley and Sons, New York.
16.Mitchell, J. K. (1968), "Soil Creep As a Rate Process" Journal of Soil Mechanics and Foundations Division, ASCE, Vol.94, No.SM1, pp.231-253.
17.Prakash, S., and Sharma, H. D. (1990), Pile foundations in Engineering Practice, John Wiley and Sons, Inc., New York, NY.
18.Prakash, S. (1987), "Buckling Loads of Fully Embedded Piles," Computer and Geotechnics, Vol.4, pp. 61-83.
19.Reddy, A. S., and Valsangkar, A. J. (1970), "Buckling of Fully and Partially Embedded Piles," Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM6, pp.1951-1965.
20.Reese, L. C. (1977), "Laterally Loaded Pile: Program Documentation," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, pp287-305.
21.Schapery, R. A. (1965),"A Method of Viscoelastic Stress Analysis Using Elastic Solution," Journal Franklin Instit. 279, pp.268-289.
22.Singh, A. and Mitchell, J. K. (1968), "General Stress-Strain-Time Function for Soils," Journal of Soil Mechanics and Foundations Division, ASCE, Vol.94, No.SM1, pp.21-46.
23.Terzaghi, K. (1955), "Evaluation of Coefficient of Subgrade Reaction," Geotechnique, Vol. 5, No.4, pp.227-326.
24.Timoshenko (1907), Bulletin Polytech Inst., St. Petersburg (see also Timoshenko, S, P., and Gere, J. M. (1964), Theory of Elastic Stability, McGraw-Hill Book Co., 2nd Ed., London, England).
25.Wu, T. H., and A. N. A. A. (1978), "Creep Deformation of Clays," Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT1, pp.61-75.
26.Winkler, E. (1867), Die Lehre Von Elastizitat anf Festigkeit (On Elasticity and Fixity), Prague.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top