跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳文菁
研究生(外文):Wu Wen-Ching
論文名稱:臺灣北部海域固體材料片表面附著真菌組成及影響真菌附著因子之探討
論文名稱(外文):Composition of attached fungi on substrta immersed in seawater at the north coast of Taiwan and factors affecting fungal attachment
指導教授:蔡國珍
指導教授(外文):Tsai Guo-Jane
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:84
中文關鍵詞:真菌附著
外文關鍵詞:fungiattach
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究分別選定基隆和平島八尺門岸邊及基隆嶼外島之岸邊為實驗地點,以檜木片、FRP片、鋼片及玻璃片為材料,在海面下一公尺進行懸吊片試驗,探討真菌附著狀況。八尺門海水與基隆嶼海水之水溫、pH值與溶氧量之差異不大,水溫為17~25oC,pH值為8.1~8.5,溶氧量為7.5~8.2 ppm,但真菌含量則以八尺門含量較高。八尺門海水和基隆嶼海水總有機碳 (TOC) 和氨氮含量,二者分別為494和337 ppm (TOC),以及0.57和0.37 ppm (氨氮)。分別針對不同地點的真菌含量作比較,以八尺門的含量高於基隆嶼;而季節變化的影響以冬季附著量較高;材料片種類對真菌附著之影響隨季節而不同。至於四種不同材料片上附著真菌種類,並無明顯不同。附著酵母菌分別屬於下列八屬:Candida、Rhodotorula、Cryptococcus、Trichosporon、Pichia、Klosckera、Saccharomyces及Debaryomyces。已鑑定之附著黴菌主要包括Penicillium、Geotrichum、Mucor、Aspergillus、Fusarium、Trichoderma與Cladosporium。由懸吊片所得269株真菌分離株,挑選出生長及附著能力最佳之三株菌Candida guilliermondii 379、Candida humicola 423及Debaryomyces polymorphus 471。另外,Rhodotorula rubra 091雖然附著力不高,但其在懸吊片上出現頻率很高,本研究乃以這四株海洋酵母菌為測試菌株,探討其在海水中生存,以及環境因子如碳源、氮源、無機鹽、pH值及溫度對其生長及對玻璃片附著能力之影響。此四株酵母菌在自然海水中可增殖100~1000倍,且在海水中存活110天以上。海水pH值 (6-9) 及溫度 (20-37oC) 對其生長及附著能力影響不顯著。海水中碳源、氮源及鹽類對酵母菌附著力之影響會隨菌株不同而異。海水中添加0.5% 碳源可能降低菌株附著力,但添加0.1% 纖維素、酪蛋白與硝酸鉀有助於菌株附著。Ca2+和Mg2+亦有助於菌株附著。另由酵母菌C. guilliermondii 379與海水附著細菌分離株Psedumonas cepacia在海水中所進行之試驗,顯示酵母菌與細菌同時存在,對彼此之間的附著影響不大;但固體表面若先有細菌附著,會降低酵母菌附著力;反之酵母菌之附著並不影響細菌的附著力。以MATH分析酵母菌體表面疏水性得知在Brain Heart Infusion Broth (BHIB) 中生長之Candida guilliermondii與Debaryomyces polymorphus,菌體表面疏水性隨菌齡增加而增大,其附著力亦隨之增大。但Candida humicola及Rhodotrula rubra卻得相反結果,表面疏水性及附著力皆隨菌齡增加而下降。海水中C. guilliermondii之表面疏水性隨時間增加而遞減,成為疏水性很低之現象。然其附著力卻隨時間增加而增大,顯示菌體表面電荷,可能為影響海水中酵母菌附著力的主要決定因子,而非疏水性。
Abstract
Substrata of wood, fiber-reinforced plastic (FRP), steel and glass were immersed in seawater under 1 meter of sea level at the seashores of Pa-Zhi-Men and Keelung Isle. The amounts and flora of the attached fungi on these substrata were investigated. The temperature, pH value and dissolved oxygen of seawater from these two different experimental areas were similar, which were in the ranges of 17~25oC, 8.1~8.5 and 7.5~8.2 ppm, respectively. However, higher fungal content was found in seawater at Pa-Zhi-Men. The total organic contents in seawater at Pa-Zhi-Men and Keelung Isle were 494 and 337 ppm, respectively; while ammonium nitrogen contents being 0.57 and 0.37, respectively. The effects of location and season on the fungal attachment were found. Higher counts of attached fungi were obtained at Pa-Zhi-Men than at Keelung Isle. Higher fungal counts were observed in winter than in summer. The effect of the types of substrata on the fungal attachment was various with season. The fungal flora on the tested substrata was similar. The attached yeast isolates were included in the genera of Candida, Rhodotorula, Cryptococcus, Trichosporon, Pichia, Klosckera, Saccharomyces and Debaryomyces. The identified mold isolates were mainly in the genera of Penicillium、Geotrichum、Mucor、Aspergillus、Fusarium、Trichoderma and Cladosporium. Three fungal isolates, Candida humicola 423, Candida guilliermondii 379 and Debaryo polymorphus 471, were chosen as the tested microorganisms due to their high adhesive capability among 269 fungal isolates. In addition, one strain of Rhodotorula rubra 091 was also tested due to its high incidence on the substrata. Their proliferation in seawater and the environmental factors of seawater, such as carbon and nitrogen, salt contents, pH value and temperature, on the growth and attachment on glass slide were investigated. These 4 isolates could proliferate by 100-1000 times and survived over 110 days in seawater. Temperature in the ranges of 20-37oC and pH value (6-9) did not affect their growth and adhesive capability. The effects of carbon sources and nitrogen sources in seawater varied with the tested isolates. In general, the addition of 0.5% various carbon sources obviously decrease the fungal attachment. 0.1% cellulose, casein or KNO3 in seawater stimulated yeast adhesion. Cations of Ca2+ and Mg2+ also showed positive effects for fungal attachment. The co-existence of yeast C. guilliermondii and bacterium Pseudomonas cepacia did not affect their individual adhesive ability. However, the pre-existence of bacteria on glass slide decreased the adhesive ability of yeast. The bacterial attachment was similar, irrespective of the presence of yeast. When C. guilliermondii and D. polymorphus were cultivated in brain heart infusion broth (BHIB), the cell surface hydrophobicity, measured by microbial adhesion to hydrocarbon method (MATH), and adhesive ability increased with increasing of cell age. However, the surface hydrophobicity and adhesive ability of C. guilliermondii and R. rubra decreased as their cell ages increased. On the other hand, the cell surface hydrophobicity of C. guilliermondi in seawater gradually decreased and became very small; however, its adhesive ability increased. This demonstrated that the factor of the cell surface charge may become the determinant factor for the attachment of yeast in seawater.
目 錄
中文摘要- ----------------------------------------------------------------------------I
英文摘要-- --------------------------------------------------------------------------II
前言 ---------------------------------------------------------------------------------IV
第一章 文獻回顧 ---------------------------------------------------------------1
一、生物膜的定義 ---------------------------------------------------------------1
二、生物膜之形成 ----------------------------------------------------------------1
三、影響微生物附著的因子 ---------------------------------------------------2
四、真菌在微生物附著中的角色 ---------------------------------------------6
五、影響真菌附著之因子 ------------------------------------------------------7
六、菌體表面疏水性程度之測定 ---------------------------------------------8
第二章 臺灣北部海域真菌附著及其組成 ---------------------------------12
中文摘要 --------------------------------------------------------------------------12
英文摘要 --------------------------------------------------------------------------13
壹、前言 --------------------------------------------------------------------------14
貳、材料與方法 ------------------------------------------------------------------15
一、材料 -----------------------------------------------------------------------15
二、方法 -----------------------------------------------------------------------16
(一)懸吊片與放置架 ------------------------------------------------16
(二)懸吊片處理 ------------------------------------------------------16
(三)懸吊片放置及採樣 ---------------------------------------------16
(四)微生物分析 ------------------------------------------------------17
(五)海水總有機碳及氨氮含量分析 --------------------------------17
(六)真菌之分離與純化 ---------------------------------------------17
(七)真菌之鑑定 ------------------------------------------------------17
參、結果與討論 ------------------------------------------------------------------18
一、海水分析 --------------------------------------------------------------18
二、不同季節真菌附著之比較 ----------------------------------------18
三、不同地點真菌附著之比較 ----------------------------------------19
四、不同材料片真菌附著之比較 --------------------------------------19
五、附著真菌之分離與鑑定 --------------------------------------------20
肆、結論 ---------------------------------------------------------------------------22
第三章、海水環境因子對真菌生長及附著能力之影響 ------------------40
中文摘要 --------------------------------------------------------------------------40
英文摘要 --------------------------------------------------------------------------41
壹、前言 ---------------------------------------------------------------------------42
貳、材料與方法 ------------------------------------------------------------------43
一、材料 --------------------------------------------------------------------43
二、方法 --------------------------------------------------------------------44
(一)菌株活化 ---------------------------------------------------------44
(二)生長及附著測試菌株之篩選 -----------------------------------44
(三)酵母菌生長曲線 ------------------------------------------------44
(四)玻璃片附著菌數之分析 --------------------------------------45
(五)環境因子對真菌生長及附著影響之試驗 --------------------45
壹、 結果與討論 -----------------------------------------------------------------47
一、測試菌株之篩選 -----------------------------------------------------47
二、海水中生長測試 -----------------------------------------------------47
三、碳源對酵母菌的生長及附著之影響 -----------------------------47
四、氮源對酵母菌的生長及附著之影響 -----------------------------48
五、鹽類對酵母菌的生長及附著影響 --------------------------------49
六、海水溫度與pH值對酵母菌生長及附著的影響 ---------------49
肆、結論 ---------------------------------------------------------------------------50
第四章 酵母菌表面疏水性及細菌存在與否對其附著能力之影響 ---61
中文摘要 --------------------------------------------------------------------------61
英文摘要 --------------------------------------------------------------------------62
壹、前言 ---------------------------------------------------------------------------63
貳、材料與方法 ------------------------------------------------------------------64
一、材料 --------------------------------------------------------------------64
二、方法 --------------------------------------------------------------------65
(一)細菌對酵母菌附著之影響 ------------------------------------65
(二)菌體表面疏水性之測定 ---------------------------------------66
(三)菌株於海水中表面疏水性及附著力變化之試驗 -----------67
(四)玻璃片上附著菌數之分析 ------------------------------------67
(五)懸浮液中菌數之分析 ------------------------------------------67
參、結果與討論 ------------------------------------------------------------------68
一、細菌對真菌附著能力之影響 --------------------------------------68
二、菌體表面疏水性對附著之影響 -----------------------------------69
肆、結論 ---------------------------------------------------------------------------71
參考文獻 --------------------------------------------------------------------------79
參考文獻
陳建初,1981,氮及其化合物,水質分析,九大圖書公司,台北,p86-94。
彭瑞森,1999,仙人掌桿菌菌體之表面特性、附著性、體外聚合物與其生物膜 之形成與去除,國立台灣大學食品科技研究所,台北。
Absolom, D.R., Lamberti, F.V., Policova, Z., Zingg, W., van Oss, C.J. and Neumann, A.W. 1983. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46:90-97.
Allison, D.G., Brown, M.R.W., Evan, D.E. and Gilbert, P. 1990. Surface hydrophobicity and dispersal of Pseudomonas aeruginosa form biofilms. FEMS Microbiol. Lett. 71:101-104.
Attridge, S.R. and Rowley, D. 1983. The role of flagellum in the adherence of Vibrio cholerae. J. Infect. Dis. 147:864-872.
Baker, J.H. 1984. Factors affecting the bacterial colonization of various surface in a river. Can. J. Microbiol. 30: 511-515.
Brown, C.M. 1977. Growth of bacteria at surfaces: Influence of nutrient limitation. FEMS. Microbiol. Lett. 1:163-166.
Brown, M.R.W. and Williams, P. 1985. The influence of the environment on envelope properties affecting survival of bacterial in infections. Ann. Rev. Microbiol. 39:527-556.
Busscher, H.J. and Weerkamp, A.H. 1987. Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev. 46: 165-173.
Carnahan, R.P., Bolin, L. and Suratt, W. 1995. Biofouling of PVD-1 reverse osmosis elements in the water treatment plant of the city of Dunedin, Florida Desalination 102: 235-244.
Characklis, W.G. and Cooksey, K.C. 1983. Biofilms and microbial fouling. Adv. Appl. Microbiol. 29: 93-137.
Christensen, G.D., Simpson, W.A., Bisno, A.L. and Beachey, E.H. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37:318-326.
Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. and Marrie, T.J. 1987. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41:435-464.
Crisp, D.J. 1984. Overview of research on marine invertebrate larve, 1940~1980. In Marine Biodeterioration: An Interdisciplinary Study. J. D. Costlow and and R. C. Tipper ed. pp. 103-126. Naval Institute Press, Annapolis, MD.
Dall, L. and Herndon, B. 1989. Quantitative assay of glycocalyx produced by viridans group Steptococci that cause endocarditis. J. Clin. Microbiol. 27:2039-2041.
De Franca, F.P. and Lutterbach, M.T.S. 1996. Variation in sessile microflora during biofilm formation on AISI-304 stainless steel coupons. J. Industrial Microbiol. 17: 6-10.
Dickson, J.S., and Koohmaraie. 1989. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl. Environ. Microbiol. 55:832-836.
Eighmy, T.T., Maratea, D. and Bishop, P.L. 1983. Electron microscopic examination of wastewater biofilm formation and structural components. Appl. Environ. Microbiol. 45:1921-1931.
Elleood, D.C. and Tempest, D.W. 1972. Effects of environment on bacterial wall content and composition. Adv. Microbial Phys. 7:43-44.
Ener, B. and Douglas, L.T. 1992. Correlation between cell-surface hydrophobicity and Candida albicans and adhesion to buccal epithelial cells. FEMS Microbiol. Lett. 99: 37-42.
Epstein, L., Laccetti, L.B., Staples, R.C. and Hoch, H.C. 1987. Cell-substratum adhesive protein involved in surface contact responses of the bean rust fungus. Physiol. Mol. Plant Path. 30: 373-388.
Eshdat, Y., Sharon, N., Ofek, I. and Mirelman, D. 1978. Isolation of a mannose-specific lectin form Escherichia coli and its role in the adherence of bacteria to epithelial cells. Biochem. Biophys. Res. Commun. 85:1551-1559.
Flemming, H.C. 1993. Biofilms and environmental protection. Water Sci. Technol. 27:1-10.
Fletcher, M. 1976. The effects of proteins on bacterial attachment to polystyrene. J. Gen. Microbiol. 94:400-404.
Fletcher, M. 1977. The effects of culture concentration and age, time and temperature on bacterial attachment to polystyrene. Gen. J. Microbiol. 23: 1-6.
Fletcher, M. 1991. The physiological activity of bacteria attached to solid surface. Adv. Micro. Physiol. 32:53-85.
Fletcher, M. and Floodgate, G.D. 1974. An electron microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J. Gen. Microbiol. 74:325.
Fletcher, M. and Loeb, G.I. 1979. Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37: 67-72.
Fred, E.B., Wilsan, F.C., and Davenport, A. 1924. The distribution and significance of bacteria in Lake Mendota. Ecology. 5:322-339.
Garibay, M.G. and Marshall, V.M.E. 1991. Polymer production by Lactobacillus delbrueckii ssp. bulgaricus. Appl. Bacteriol. 70:325-328.
Gilbert, P., Allison, D.G., Evans, D., Handley, P.S. and Brown, M.R.W. 1989. Growth rate control of adherent bacterial populations. Appl. Environ. Microbiol. 55:1308-1311.
Gilbert, P., Evans, D.J., Evans, E., Duguid, I.G. and Brown, M.R.W. 1991. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. Appl. Bacteriol. 71:72-77.
Harrison, S.T., Moss, S.T. and Jones, E.B.G. 1988. Fungal adhesion in aquatic Hyphomycetes. Int. Biodeterioration. 24: 271-276.
Hazen, K.C., Plotkin, B.J. and Klimas, D.M. 1986. Influence of growth on cell hydrophobicity of Candida albicans and Candida glabrata. Infect. Immun. 54:269-271.
Hermansson, M., Kjelleberg, S., Korhonen, T.K. and Stenstrom, T.A. 1982. Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. Arch. Microbiol. 131:308-312.
Hood, S.K. and Zottola, E.A. 1995. Biofilms in food processing. Food Control. 6:9-18.
Husmark, U. and Ronner, U. 1990. Forces involved in adhesion of Bacillus cereus spores to solid surfaces under different environmental conditions. J. Appl. Bacteriol. 69:557-562.
Hyde, K.D. and Jones, E.B.G. 1989. Observations on ascospore morphology in marine fungi and their attachment to surfaces. Botanica Marine. 32: 205-218.
Hyde, K.D., Jones, E.B.G. and Moss, S.T. 1986a. How do fungal spores attach to surfaces ? In Proceedings of the 6th Biodeterioration Symposium. S. Barry, D.R. Houghton, G.C. Llewellyn and C.E. O’Rear ed. pp. 584-589. George Washington University and Virginia Commonwealth University, Washington, D. C.
Hyde, K.D., Jones, E.B.G. and Moss, S.T. 1986b. Mycelial adhesion to surfaces. In The Biology of Marine Fungi. S. T. Moss ed. pp. 331-390. Cambridge Univesity Press, Cambridge.
Hyde, K.D., Moss, S.T. and Jones, E.B.G. 1989. Attachment studies in marine fungi. Biofouling. 1: 287-298.
Johnson, R.G., Jones, E.B.G. and Moss, S.T. 1987. Taxonomic studies of the Halosphaeriaceae : Ceriosporopsis, Haligena and Appendichordella gen. nov. Can. J. Botany. 65: 931-942.
Jones, C.R., Handley, P.S., Robson, G.D., Eastwood, I.M. and Greenhalgh, M. 1996. Biocides incorporated into plasticized polyvinylchloride reduce adhesion of Pseudomonas fluorescens BL146 and substratum hydrophobicity. J. Appl. Bacteriol. 81:553-560.
Kennedy, M.J. 1990. Models for studying the role of fungal attachment in colonization and pathogenesis. Mycopathologia 109: 123-137.
Kennedy, M.J., Rogers, A.L. and Yancey, R.J. 1989. Environmental alteration and phenotypic regulation of Candida albicans adhesion to plastic. Infect. Immun. 57:3876-3881.
Kjelleberg, S. and Hermansson, M. 1984. Staration-induced effects on bacterial surface characteristics. Appl. Environ. Microbiol. 48:497-503.
Kozel, T.R. 1983. Dissociation of a hydrophobic surface from phagocytosis of encapsulated and nonencapsulated Cryptococcus neoformans. Infect. Imman. 39:1214-1219.
Lawrence, J.R., Delaquis, P.J., Korber, D.R. and Caldwell, D.E. 1987. Behaviour of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microbiol. Ecol. 14: 1-14.
Leclercq-Perlat, M.N. and Lalande, M. 1994. Cleanability in relation to surface chemical composition and surface finishing of some materials commonly used in food industries. J. Food Eng. 23:501-517.
Lehmann, F.L., Russell, P.S., Solomon, L.S. and Murphy, K.D. 1992. Bacterial growth during continuous milk pasteurization. Austr. J. Dairy Technol. 47(5): 28-32.
Lewin, R. 1984. Microbial adhesion is a sticky problem. Science. 224: 275-277.
Little, B.J. and Wagner, P.A. 1995. Interrelationship between marine biofouling, cathodic protection and microbiologically influenced corrosion. Water Sci. Forum. 192-194: 433-446.
Lu, R., Xiao, C., Liu, Q., Bai, S., Chen, H. and Wang, F. 1984. A survey of harmful microbes in desalting water systems of Beijing heat and power station. Acta Microbiol. Sin. 24: 171-180.
Mafu, A.A., Roy, D., Goulet, J. and Magny, P. 1990. Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J. Food Prot. 54:742-746.
Magnusson, K.E., Kihlstrom, E., Norlander, L., Norqvist, A., Davies, J., and Normark, S. 1979. Effect of colony type and pH on surface charge and hydrophobicity of Neisseria gonorrhoeae. Infect. Immu. 26:397-401.
Marshall, K.C., Stout, R. and Mitchell, R. 1971. Mechanism of initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68: 337-348.
Mattila-Sandholm, T. and Wirtanen, G. 1992. Biofilm formation in the industry: A review. Food Rev. Int. 8:573-603.
McCourtie, J. and Douglas, L.J. 1981. Relationship between cell surface composition of Candida albicans and adherence to acrylic after growth on different carbon sources. Infect. Immu. 32: 1234-1241.
McEldowney, S. and Fletcher, M. 1986. Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol. 52:460-465.
McEldowney, S. and Fletcher, M. 1988. Effect of pH, temperature, and growth conditions on the adhesion of a gliding bacterium and three nongliding bacteria to polystyrene. Microb. Ecol. 16:183-195.
McGuire, J. and Krisdhasima, V. 1991. Surface chemical influences on protein adsorption kinetics. Food Technol. 45: 92-96.
McSweegan, E. and Walker, R.I. 1986. Identification and characterization of two Campylobacter jejuni adhesion for cellular and mucous substrates. Infect. Immun. 53:141-148.
Meadows, P.S. and Anderson, J.G. 1979. The microbiology of interfaces in the marine environment. In Progress in Industrial Microbiology. J.J. Bull ed. 15: 207-265. Elsevier, London.
Minagi, S., Minake, Y., Fujioka, Y., Tsuru, H. and Suginaka, H. 1986. Cell-surface hydrophobicity of Candida species as determined by the contact-angle and hydrocarbon-adherence methods. J. General Microbiol. 132:1111-1115.
Morisaki, H. 1983. Effect of solid-liquid interface on metabolic activity of Escherichia coli. J. Gen. Appl. Microbiol. 29:195-204.
Morisaki, H. 1984. Effect of liquid-liquid interface on the metabolic activity of Escherichia coli. J. Gen. Appl. Microbiol. 30:35-42.
Novitsky, J.A. and Morita, R.Y. 1977. Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl. Environ. Microbiol. 33: 635-641.
Per Jonsson and Wadstrom, T. 1983. High surface hydrophobicity of Staphylococcus aureus as revealed by hydrophobic interaction chromatography. Curr. Microbiol. 8:347-353.
Pringle, J.H. Fletcher, M. and Ellwood, D.C. 1983. Selection of attachment mutants during the continuous culture of Pseudomonas fluoresceus and relationship between attachment ability and surface composition. J. Gen. Microbiol. 129:2557-2569.
Pringle, J.H., and Fletcher, M. 1986. Influence of substratum hydration and absorbed macromolecules on bacterial attachment to surfaces. Appl. Environ. Microbiol. 51: 1321-1325.
Ronner, U., Husmark, U. and Henriksson, A. 1990. Adhesion of Bacillus spores in relation to hydrophobicity. J. Appl. Bacteriol. 69: 550-556.
Reinhart, H., Muller, G and Sobel, J.D. 1985. Specificity and mechanism of in vitro adhesion of Candida albicans. Ann. Clin. Lab. Sci. 15:406-413.
Rosenberg, M. 1984a. Bacterial adherence to hydrocarbons: A useful teachnique for studying cell surface hydrophobicity, FEMS Microbiol. Lett. 22:289-295.
Rosenberg, M. 1984b. Ammonium sulphate enhances adherence of Escherichia coli J-5 to hydrocarbon and polystyrene, FEMS Microbiol. Lett. 25:41-45.
Rosenberg, M. and Doyle, R.J. 1990. Microbial cell surface hydrophobicity: History, measurement, and significance. In Microbial Cell Surface hydrophobicity. R. J. Doyle and M. Rosenberg ed. pp.1-37. ASM press, Washington, D. C.
Rosenberg, M. and Kjelleberg, S. 1986. Hydrophobic interactions: Role in bacterial adhesion. Adv. Microbiol. Ecol. 9: 343-393.
Rosenberg, M., Gutnick, D. and Rosenberg, E. 1980. Adherence of bacteria to hydrocararbons: A simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Letters 9:29-33.
Rutter, P.R. and Vincent, B. 1987. Attachment mechanisms in the surface growth of microogranisms. In Physiological Mathematical Models in Microbiology. Vol. II, M.J. Bearin and J.T. Prosser ed. CRC Press, Roca Raton, F1.
Samson, R.A. and van Reenen-Hoekstra, E.S. (Eds.) 1988. Introduction to Food-Borne Fungi. R.A. Samson and E.S. van Reenen-Hoekstra. Centraalbureau voor schimmelcultures, BAARN, Wageningen.
Scott, F.D. 1988. Assessment and control of microbially-induced corrosion. British Corrossion J. April, 224-229.
Smyth, C.J., Jonsson, P., Olsson, E., Rosengern, J., Hjerten, S. and Wadstrom, T. 1978. Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect. Immun. 22:462-472.
Sonak, S. and Bhosle, N. 1995. Observation on biofilm bacteria isolated from aluminium panels immersed in estuarine waters. Biofouling 8:243-254.
Speers, J.G.S. and Gilmour, A. 1985. The influence of milk and milk components on the attachment of bacteria to farm dairy equipment surfaces. J. Appl. Bacteriol. 59: 142-147.
Stenstrom, J.A. 1989. Bacterial hydrophobicity and overall parameter for the measurement of adhesion potential to soil particles. Appl. Environ. Microbiol. 55: 142-147.
Turakhia, M.H. and Characklis, W.G. 1989. Activity of Pseudomonas aeruginosa in biofilms: effect of calcium. Biotech. Bioeng. 33:406-414.
van Loosdecht, M.C.M., Lyklema, J., Norde, W. and Zehnder, A.J.B. 1987a. The role of bacterial cell well hydrophobicity in adhesion. Appl. Environ. Microbiol. 53:1893-1897.
van Loosdrecht, M.C.M., Lyklema, J., Norde, W., Schraa, G. and Zehnder, A.J.B. 1987b. Electrophoretic mobility and hydrophobicity as measure to predict the initial step of bacterial adhesion. Appl. Environ. Microbiol. 53:1898-1901.
van Loosdrecht, M.C.M., Lyklama, J., Norde, W. and Zehnder, A.J.W. 1990. Influence of interfaces on microbial activity. Microbiol. Rev. 54:75-87.
Whitekettle, W.K. 1991. Effects of surface-active chemicals on microbial adhesion. J. Ind. Microbiol. 7: 105-116.
Wirtanen, G. and Sandholm., T.M. 1993. Epifluorescence image analysis and cultivation of foodborne biofilm bacteria grown on stainless steel surfaces. J. Food Prot. 56:678-683.
Wrangstadh, M., Conway, P.L. and Kjelleberg, S. 1986. The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. Arch. Microbiol. 145: 220-227.
Young, D.H. and Kauss, H. 1984. Adhesion of Colletotrichum lindemuthianum spores to Phaseolus vulgaris hypocotyls and to polystyrene. Appl. Environ. Microbiol. 47: 616-619.
Zachary, A., Taylor, M.E., Scott, F.E. and Colwell, R.R. 1978. A method for rapid evaluation of materials for susceptibility to marine biofouling. Int. Biodeterior. Bull. 14(4): 111-118.
ZoBell, C.E. and Allen, E.C. 1935. Attachment of marine bacteria to submerged surfaces. Proc. Soc. Exp. Biol. Med. 30: 1409-1411.
ZoBell, C.E. and Anderson, D.Q. 1936. Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol. Bull. 71:324-342.
Zottola, E.A. 1991. Characterization of the attachment matrix of Pseudomonas fragi attached to non-porous surfaces. Biofouling 5: 37-55.
Zottola, E.A. 1994. Microbial attachment and biofilm formation: A new problem for the food industry? Food Technol. 48:107-114.
Zvyagintsev, D.G. 1962. Some regularities of adsorption of microorganism on ion exchange resin. Microbiology 31:275-277.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top