(44.192.112.123) 您好!臺灣時間:2021/03/01 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉玲伶
研究生(外文):Ling-Ling Liu
論文名稱:飢餓對海洋細菌形態變化及流速對細菌細胞表面附著影響因子之探討
論文名稱(外文):Effects of starvation on cell morphology and flow rate on cell surface adhesion of marine bacteria
指導教授:蔡土及
指導教授(外文):T. J. Chai
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:107
中文關鍵詞:飢餓掃描式電子顯微鏡穿透式電子顯微鏡疏水性交互層析法細菌吸附碳氫化合物法胞外多醣物質流速
外文關鍵詞:starvationscanning electron microscopytransmitting electron microscopyhydrophobic interaction chromatograpybacterial adhesion to hydrocarbonextracellular polysaccharidesflow rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解生物附著形成機制,挑選由台灣基隆八尺門所分離出的海洋黏液細菌V. alginolyticus HT01作為本論文之實驗菌株,分別討論此菌於飢餓環境下之生菌數、形態及疏水性的變化,並利用隧道型循環測試系統測試四種流速對細菌附著於固體表面的影響,利用掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察菌體形態及附著於固體表面的細微構造。菌株的形態由未飢餓時的桿形逐漸變成球形,生菌數在飢餓28天內由108 降至106 CFU/ml,OD650 值亦隨飢餓時間的增加有下降的現象。飢餓46天的細胞具有單鞭毛,形態為球形及桿形,細胞外圍有一層黏性物質包覆,生菌數由108 降至104 CFU/ml。利用溫度轉移使細胞復甦,3天內其生菌數增加至108 CFU/ml。利用BATH及 HIC測試飢餓細菌的表面疏水性變化,兩種方法顯示菌體的疏水性並不隨飢餓時間增加,反而有下降的現象。
選用四種不同流速測定細菌在玻璃片(coverglass)及聚脂樹脂片(polyester disks)上的附著情形,以掃描式電子顯微鏡觀察菌體表面及附著的細微變化。正常細胞附著於玻璃片上的細菌數,在36 h以流速0.38及0.65 km/h 較佳,在聚脂樹脂片上以流速0.38 km/h 高於其他三種流速。以SEM 觀察細菌附著於玻璃片及聚脂樹脂片時,菌體表面有胞外多醣類物質的形成,而菌體型態則隨著附著時間的增長由桿形變成球形,甚至有凹陷的現象。1週飢餓的細胞附著於玻璃片上的細菌數並不隨著流速的改變而有所差異,其在聚脂樹脂片上的最佳附著流速與正常細胞相同,而以SEM 觀察1週飢餓細菌附著於玻璃片時,細胞形態則隨附著時間的增加逐漸變成圈形,在聚脂樹脂片上則無此現象,但菌體表面的胞外多醣類物質較玻璃片者多。流速對2週飢餓細胞的附著情形與1週飢餓細菌相似,而 SEM的觀察,在玻璃片上及聚脂樹脂片上的附著情形與1週飢餓細菌相似,但其胞外多醣類物質則皆明顯增多。
Changes in viable bacterial cell number, cell morphology and hydrophobicity during starvation were determined with a mucoid Vibrio alginolyticus HT01 isolated from Patsu Mesn pier, Keelung, Taiwan. Cell adhesion on solid surface were determined with four flow rates in a tunnel circulation flow system. The fine structure of cell adhesion on solid surface was determined by both scanning electron microscopy and transmitting electron microscopy. Rods cells in normal culture condition was changed to sphere cells under starvation. A normal viable cell count of 108 CFU/ml was reduced to 106 CFU/ml when cells entered in starvation and the cell density of OD650 was decreased accordingly. Cells at 46 days starvation appeared as spheres or rods and still possessed monotrichous flagellum. A mucoid substance surrounded the cell appeared and the cell number was reduced from 108 to 104 CFU/ml. After temperature up-shift for 3 days the starved cells were resuscinated to reach 108 CFU/ml again. Changes in hydrophobicity of starved cells were determined and found decreased when measured with both bacterial adhesion hrdrocarbon (BATH) and hydrophobic interaction chromatography (HIC) methods.
Cell adhesion on both coverglass and polyester disks with four different flow rates were determined. Adhesion of normal cells on coverglass was found highest at 36 h adhesion with both 0.38 and 0.65 km/h flow rates among the four different flow rates determined. For the adhesion on polyester disks, flow rate at 0.38 km/h was also found highest than the other three flow rates. A layer of extracellular polysaccharides was appeared when cell adhesion on both coverglass and polyester disks was examined with SEM. Cell morphology was graduately changed from rods to spheres and even intent shapes as adhesion process prolonged. Cells aderent to coverglass were not varied with changes in flow rate in one week starved cells. These one week starved cells had a similar adhesion rate on coverglass similar to that of normal cells as more cells became sphere when adhesion time was extended. It was not found in the case of adhesion on polyester disks. Nevertheless, more extracellular polysaccharide substance was found on polyester disks than on coveglass. Cell adhesion for two week starved cells was similar to that of one week starved cells. Under SEM observation cells adhesion of two week starvation cells to both coverglass and polyester disks were similar to that of one week starvation cells. But, more extracellular polysaccharides were evidently increased.
目 錄
頁次
圖表目錄.................................................................................................................................................................Ⅳ
中文摘要..................................................................................................................................................................1
英文摘要..................................................................................................................................................................3
前言..........................................................................................................................................................................5
第一章 文獻整理.....................................................................................................................................................7
一、 附著機制.........................................................................................................................................................8
1. 胞外多醣物質......................................................................................................................................................8
2. 鞭毛及纖毛..........................................................................................................................................................9
3. 外膜蛋白質.........................................................................................................................................................10
三、 飢餓變化對附著之影響................................................................................................................................10
四、 影響微生物附著的環境因子........................................................................................................................12
1. 營養濃度.............................................................................................................................................................12
2. 流速.....................................................................................................................................................................13
3. 溫度.....................................................................................................................................................................14
4. 材質.....................................................................................................................................................................14
5. 電解質種類及濃度.............................................................................................................................................15
6. 化學藥劑.............................................................................................................................................................16
五、 生物膜之物性、化性與生物學性質............................................................................................................18
1. 物理性質.............................................................................................................................................................19
2. 化學性質.............................................................................................................................................................19
3. 生物學性質.........................................................................................................................................................20
六、 偵測方法........................................................................................................................................................20
1. 附著試驗的計數方法.........................................................................................................................................20
(1) 稀釋與平板計數法(Dilution and plating methods.............................................................................................20
(2) 顯微鏡檢查法(Microscopy examination)...........................................................................................................21
(3) 分光光度比色法(Spectrophotometry)................................................................................................................22
(4) ATP分析法(ATP assay).......................................................................................................................................22
(5) 放射性標示技術法(Radiolabelling technique methods).....................................................................................22
(6) 生化分析法(Biochemical assay).........................................................................................................................23
2. 細胞外圍物質形成的偵測..................................................................................................................................23
(1) 多醣類................................................................................................................................................................23
(2) 疏水性與電荷....................................................................................................................................................26
中文摘要..................................................................................................................................................................26
英文摘要..................................................................................................................................................................28
壹、 前言.................................................................................................................................................................30
貳、 材料與方法.....................................................................................................................................................31
一、 材料.................................................................................................................................................................31
1.實驗菌株...............................................................................................................................................................31
2.培養基...................................................................................................................................................................31
3.緩衝溶液...............................................................................................................................................................31
4.化學藥品...............................................................................................................................................................32
5.鞭毛與莢膜染色...................................................................................................................................................33
6.電顯固定液..........................................................................................................................................................33
7.試驗材料..............................................................................................................................................................33
8.主要儀器設備......................................................................................................................................................34
二、 方法.................................................................................................................................................................35
1.菌種的保存與活化...............................................................................................................................................35
2.菌體的收集...........................................................................................................................................................35
3.菌株自然變異.......................................................................................................................................................35
4.疏水性試驗...........................................................................................................................................................36
(1)疏水性交互層析法.............................................................................................................................................36
(2)細菌吸附於碳氫化合物.....................................................................................................................................37
5.掃瞄式電子顯微鏡之樣品製備與觀察...............................................................................................................37
6.鞭毛負染色法之製備與觀察...............................................................................................................................38
7.鞭毛與莢膜兩用染色法.......................................................................................................................................38
參、 結果與討論.....................................................................................................................................................39
一、 菌株之形態及生化特性.................................................................................................................................39
二、 菌齡與疏水性之關係.....................................................................................................................................40
三、 低溫無營養條件對生菌數及形態之變化.....................................................................................................41
四、 低溫飢餓對細胞之疏水性變化.....................................................................................................................43
1. BATH (Bacteria adhesion to hydrocarbon)............................................................................................................43
2. HIC (Hydrophobic interaction chromatograpy).....................................................................................................44
第三章 不同流速對飢餓細胞附著於固體表面之影響.........................................................................................47
中文摘要..................................................................................................................................................................47
英文摘要..................................................................................................................................................................49
壹、 前言.................................................................................................................................................................51
貳、 材料與方法.....................................................................................................................................................52
一、 材料............................................................................................................................................................... .52
1. 實驗菌株..............................................................................................................................................................52
2. 緩衝溶液..............................................................................................................................................................52
3. 化學藥品..............................................................................................................................................................52
4. 電顯固定液..........................................................................................................................................................52
5. 試驗材質..............................................................................................................................................................52
6. 主要設備及儀器..................................................................................................................................................53
二、 方法.................................................................................................................................................................53
1.菌株的保存與活化...............................................................................................................................................53
2.菌體的收集...........................................................................................................................................................53
3.附著試驗...............................................................................................................................................................53
4.掃描式電子顯微鏡之樣品製備與觀察...............................................................................................................55
參、 結果與討論.....................................................................................................................................................56
一、隧道式循環測試槽及系統..............................................................................................................................56
二、不同流速對飢餓細胞附著於固體表面之影響..............................................................................................56
1. 正常細胞..............................................................................................................................................................57
2. 飢餓1週的細菌....................................................................................................................................................59
3. 飢餓2週的細菌.....................................................................................................................................................61
第四章 參考文獻......................................................................................................................................................64
圖表目錄
第二章
Table 2-1. Some biochemical characteristics of Vibrio alginolyticus HT01 ..................................................................80
Table 2-2. Effect of 3 media on colony appearance of V. alginolyticus HT01..............................................................81
Table 2-3. Viable count, OD and size change of V. alginolyticus HT01 in MMS buffer during starvation at 4℃ and resuscitation of 46d starved cells at 25℃......................................................................................................................82
Table 2-4. Relative hydrophobicity of V. alginolyticus HT01 determined by BATH in starvation state........................83
Table 2-5. Relative hydrophobicity of V. alginolyticus HT01 determined by HIC in starvation state............................84
Fig. 2-1. V. alginolyticus HT01 possessed a single polar flagellum with flagella stain and negative stain.......................85
Fig. 2-2. The opaque and transparent colonies of V. alginolyticus HT01 possessed different type of capsules ..............86
Fig. 2-3. V. alginolyticus HT01 was grown in TSB.......................................................................................................87
Fig. 2-4. Plate count and OD changes of V. alginolyticus HT01 in MMS buffer during starvation at 4℃......................88
Fig. 2-5. Scanning electron micrographs of V. alginolyticus HT01….…89
Fig. 2-6. V. alginolyticus HT01 in MMS buffer during 7week starvation changed in morphology by negative stain.....91
第三章
Fig. 3-1. Biofilm reactor circulation flow system...........................................................................................................92
Fig. 3-2. Long tunnel flow chambe...............................................................................................................................93
Fig. 3-3. Adhesion of V. alginolyticus HT01 on solid surfaces at various flow rates......................................................94
Fig. 3-4. Adhesion of V. alginolyticus HT01 on coverglass at different exposed times..................................................95
Fig. 3-5. Adhesion of V. alginolyticus HT01 on polyester disks at different exposed times...........................................96
Fig. 3-6. Adhesion of one week starved cells on solid surfaces at various flow rates......................................................98
Fig. 3-7. Adhesion of one week starved cells on coverglass at different exposed times............................................... ..99
Fig. 3-8. Adhesion of one week starved cells on polyester disks at different exposed times..........................................101
Fig. 3-9. Adhesion of two week starved cells on solid surfaces at various flow rates....................................................103
Fig. 3-10. Adhesion of two week starved cells on coverglass at different exposed times..............................................104
Fig. 3-11. Adhesion of two week starved cells on polyester disks at different exposed times.......................................106
生菊,許兵,紀佛尚,徐懷恕及R. R. Colwell。1994。海洋細菌對海灣扇貝幼蟲附著的影響。青島海洋大學學報。24: 150-156.
徐懷恕,許兵及紀佛尚。1991。扇貝幼蟲附著基的細菌組成及其作用。中國水產學報。15: 118-123.
陳家全。1991。頁64∼65。科技叢書-生物電子顯微鏡學。陳家全,李家維,楊瑞森 作。新竹市。國科會精儀中心。
游祥平、陳建初、陳瑤湖、白書禎、劉平忠、李嘉麒、郭淑德、郭世章。1986。沿海發電廠冷卻系統污損附著生物去除對策之研究,第二年度報告。台灣電力公司。台灣海洋大學。
楊盛行,黃哲崇,王瑋龍及林義宗。1992。台灣地區港區之海生物附著研究。中華生質能源學會會誌。11(1-2): 42-66。
劉秀美。 1995。生物腐蝕。頁:2-1∼2-25。海洋構造物之腐蝕探討講習會(水文及污損生物之影響)論文集。中華民國,台灣,台中。省政府交通處港灣技術研究所。
蔡土及,周哆椰,吳尚穎。1997。海洋黏液細菌在固體表面附著膜式系統之建立。台灣水產學會86年度論文發表會摘要集。中華民國。台灣。屏東。
Absolom, D. R., F. V. Lamberti, Z. Policova, W. Zingg, C. J. van Oss and A. W. Neumann. 1983. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46:90-97.
Albertson, N. H., T. Nystrom and S. Kjelleberg. 1990. Exoprotease activity of two marine bacteria during starvation. Appl. Environ. Microbiol. 56:218-223.
Allison, D. G. and I. W. Sutherland. 1984. A staining technique for attached bacteria and its correlation to extracellular carbohydrate production. J. Microbiol. Methods. 2: 93-99.
Allison, D. G. and I. W. Sutherland.1987. The role of exopolysaccharides in adhesion of fresh water bacteria. J. Gen. Microbiol. 133:1319-1327.
Amy, P. S., and R. Y. Morita. 1983. Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. Environ. Microbiol.45: 1109-1115.
Beech, I. B. and C. C. Gaylarde. 1989. Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. J. Appl. Bacteriol. 67:201-207.
Biosca, E. G., H. Liorens, E. Garay, and C. Amaro, 1993. Presence of capsule in Vibrio vulnificus biotype 2 and its relationship to virulence for eels. Infect. Immun. 61: 1611-1618.
Blackman, I. C. and J. F. Frank. 1996. Growth of Listeria monocytogenes as a various food-processing surfaces. J. Food Prot. 59:827-831.
Buswell, C. M., Y. M. Herlihy, P. D. Marsh, C. W. Keevil and S. A. Leach. 1997. Coaggregation amongst aquatic biofilm bacteria. J. Appl. Microb. 83:477-484.
Chai, T. 1970. Studies on the bacteria flora of fish pen slime. MS Thesis, University of Marsachasette, Amherst, Marsachsetts. P 154.
Chai, T. and J. Foulds. 1974. Demonstration of a missing outer membrane protein in tolG mutants of Escherichia coli. J. Mol. Biol.85:465-474.
Chai, T., and J. Foulds. 1974. Demonstration of a missing outer membrane protein in tol G mutants of Escherichia coli. J. Mol. Biol. 85: 465-474.
Chai, T., T. Y. Chou, and S. Y. Wu. 1998. A model study on attachment to solid surfaces by mucoid bacteria in marine water. Annual Conference on Pacific Fisheries Technologists. Seattle, Washington, U.S.A. Feb., 22-25,1998.
Characklis, W. G. 1973. Attached microbial growth. I. Attachment and growth. Water Res. 7: 1113-1127.
Characklis, W. G. 1981. Fouling biofilm development: A process analysis. Biotech. Bioengin. 23:1923-1960.
Characklis, W. G. 1990a. Biofilm processes. P.195-232. In W. G. Characklis and K. C. Marshall (ed.), Biofilm. Chichester Brisbane Toronto Singapore, New York.
Characklis, W. G. 1990c. Microbial Fouling. P. 523-584. In W. G. Characlis and K. C. Marshall (ed.), Bioflim. Chichester Brisbane Toronto Singapore, New York.
Characklis, W. G. and K. E. Cooksey. 1983. Biofilm and microbial fouling. Adv. Appl. Microbiol. 29:93-138.
Coolsey, K. E. 1981. Requirement for calcium in adhesion of a fouling diatom to glass. Appl. Environ. Microbiol.41:1378-1382.
Corpe, W. A. 1974. Periphytic marine bacteria and the formation of microbial films on solid surfaces. In Effect of Ocean Environment on Microbial Activity, R. R. Colwell and R. Y. Morita (Eds), University Park Press, Baltimore, pp. 397-417.
Corpe, W. A.1970a. An acid polysaccharide produced by a primary film-forming marine bacterium. In Developments in Industrial Microbiology Ⅱ, E. D. Murray (ed.),. Proceedings of the Society for Industrial Microbiology, pp. 402-412.
Costeron J. W. 1995. Overview of microbial biofilms. J. Ind. Microb. 15:137-140.
Costerton, J. W. and H. M. Lappin-Scott. 1989. Behavior of bacteria in biofilms. ASM News. 55:650-654.
Dai, J., Y. Lee, and H. Wong. 1992. Effects of iron limitation on production of a siderophore, outer membrane proteins, and hemolysin and on hydrophobicity, cell adherence, and lethality for mice of V. parahaemolyticus. Infect. Immun. 60: 2952-2956.
Dawson, M. P., B. A. Humphrey and K. C. Marshall. 1981. Adhesion: A tactic in the survival strategy of a marine Vibrio starvation.Curr. Microb. 6:195-199.
Dickson, J. S. and M. Koohmaraie. 1989. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl. Environ. Microbiol. 55:832-836.
Dowling,N. J. E., S. A. Brooks, T. J. Phelps, and D. C. White. 1992. Effects of selection and fate of substrates supplied to anaerobic bacteria involved in the corrosion of pipe-line steel. J. Ind. Microbiol. 10: 207-215.
Duddridge, J. E., C. A. Kent and J. F. Laws. Effect of surface shear stress on the attachment of Pseudomonas fluorescens to stainless under defined flow condition. 153-164.
Duddridge, J. E., C. A. Kent, and J. F. Laws. 1981. Bacterial adhesion to metallic surface. In Progress in the prevention of fouling in industrial plant. Corrosion Science Division,Institution of Corrosion Sciences and Technology, Nottingham University, Notting-ham, England pp.127-153.
Duguid, J. P. and J. F. Wilkinson. 1953. The influence of cultural conditions on polysaccharide production by Aerobacter aerogenes. J. Gen. Microbiol. 9:174-189.
Egan, B. 1989. Marine microbial adhesion and its consequences. Dev. Ind. Microbiol. 45:220-238.
Escher, A. and W. G. Characklis. 1990. Modeling the initial events in biofilm accumulation. P.445-486. In W. G. Characklis and K. C. Marshall (ed.), Biofilm. Chichester, Brisbane, Toronto, Singapore, New York.
Fattom , A. , and M. Shilo. 1984. Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. Environ. Microbiol. 47: 135-143.
Firstenberg-Eden, R., S. Notermans, F. Thiel, S. Henstra, E. H. Kampelmacher. 1979. Scanning electron microscopic investigation into attachment of bacteria to teats of cows. J. Food Prot. 42:305-309.
Fletcher, M. 1988. Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J. Bacteriol. 170:2027-2030.
Fletcher, M. and G. D. Floodgate. 1973. An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J. Gen. Microbio.74:325-334.
Fletcher, M., and G. I. Loeb. 1979. Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37: 67-72.
Flint, S. H., J. D. Brooks and P. J. Bremer. 1997. The influence of cell surface properties of thermopholic streptococci on attachment to stainless steel. J. Appl. Microb. 83:508-517.
Gabriel-Piette, J. P. and E. S. Idziak. 1991. Role of flagella in adhesion of Pseudomonas fluorescens to tendon slices. Appl. Environ. Microbiol. 57:1635-1639.
Gabriel-Piette, J. P. and E. S. Idziak. 1992. A model study of factors involved in adhesion of Pseudomonas fluorescens to meat. Appl. Environ. Microbiol. 58:2783-2791.
Gantzer, C. J., A. B. Cunningham, W. Gujer, B. Gutekunst, J. J. Heijnen, E. N. Lightfoot, G. Odham, B. E. Rittmann, E. Rosenberg, K. D. Stolzenbach, A. J. B. Zehnder. 1989. Group report : Exchange processes at the fluid-biofilm interface.pp-73-89. In W. G. Characklis and P. A. Wilderer (ed.). Structure and function of biofilms. John Wiley & Sons, Inc., New York.
Gibbons, R. J., I. Etherden, and Z. Skobe. 1983. Association of fimbriae with the hydrophobicity of Streptococcus sanguis FC-1 and adherence to salivary pellicles. Infect. Immun. 41: 414-417.
Gilbert, P., D. J. Evans, I. G. Duguid, and M. R. W. Brown. 1991. Surface characteristics and adhesion of Escherichia coil and Staphylococcus epidermidis. J. Appl. Bacteriol. 71:72-77.
Goldberg, S., Y. Konis and M. Rosenberg. 1990. Effect of cetylpyridinium chloride on microbial adhesion to hexadecane and polystyrene. Appl. Environ. Microbiol. 56:1678-1682.
Harty, D. W. S., and T. R. Bott. 1981. Deposition and growth of microorganisms on simulated heat exchanger surfaces. In E. F. C. Somerscales and J. G. Knudsen (eds), Fouling of heat transfer equipment, Hemisphere, Washington, pp. 334-344.
Hayat, W., L. Dijkhuizen. 1983. Physiological responses to nutrient limitation. Annu. Rev. Microbiol. 37: 1-23.
Herald, P. J. and E. A. Zottola. 1988. Scanning electron microscopic examination of Yersinia enterocolitica attached to stainless steel at selected temperatures and pH values. J. Food Prot. 51:445-448.
Herald, P. J. and E. A. Zottola. 1989. Effect of various agents upon the attachment of Pseudomonas fragi to stainless steel. J. Food Sci. 54:461-464.
Herson, D. S., B. McGonigle, M. A. Payer and K. H. Baker. 1987. Attachment as a factor in the protection of Enterobacter cloacae from chlorination. Appl. Environ. Microbiol 53:1178-1180.
Humphrey, B., S. Kjelleberg and K. C. Marshall. 1983. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl. Environ. Microbiol. 45:43-47.
Imam, S. H., and J. M. Gould. 1990. Adhesion of an amylolytic Arthrobacter sp. to starch-containing plastic films. Appl. Environ. Microbiol. 56: 872-876.
Ista, L. K., H. Fan, O. Baca and G. P. Lopez. 1996. Attachment of bacteria to model solid surfaces: oligo(ethylene glycol) surfaces inhibit bacterial attachment. FEMS Microbiol. Lett. 142:59-63.
Jiang X. and T-J Chai. 1996. Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62:1300-1305.
Kabir, S., and S. Ali. 1983. Characterization of surface properties of Vibrio cholerae. Infect. Immun. 39: 1048-1058.
Karl, D. M. 1980. Cellular nucleotide measurements and applications in microbiol ecology. Micribiol. Rev. 44: 739-796.
Kim, K. Y. and J. F. Frank. 1995. Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J. Food Prot. 58:24-28.
Kjelleberg, S. and M. Hermansson. 1984. Starvation-induced effects on bacterial surface characteristics. Appl. Environ. Microbiol. 48:497-503.
Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1983. Initial phases of starvation and activity of bacteria at surfaces. Appl. Environ. Microbiol. 46: 978-984.
Kjelleberg, S., K. C. Marshall, M. Hermansson. 1985. Oligotrophic and copiotrophic marine bacteria-observation related to attachment. FEMS Microbiol. Ecol. 31: 89-96.
Knirel. Y. A., H. Moll, J. H. Helbig, U. Zahringer. 1997. Chemical characterization of a new 5,7-diamino-3,5,7,9-tetradeoxynonulosonic acid released by mild acid hydrolysis of the Legionella pneumophila serogroup 1 lipopolysaccharide. Carbohydr. Res.304:77-79.
Kogure. K., E. Ikemoto and H. Morisaki. 1998. Attachment of Vibrio alginolyticus to glass surface is dependent on swimming speed. J. Bacteriol. 180:932-937.
Krambeck, C., H. Krambeck, and J. Overbeck. 1981. Microcomputer-assisted biomass determination of plankton bacteria on sanning electron micrographs. Appl. Environ. Microbiol. 42: 142-149.
LeChevallier, M. W., C. D. Cawthon and R. G. Lee. 1988. Inactivation of biofilm bacteria. Appl. Environ. Microbiol.54:2492-2499.
Lillard, H. S. 1985. Bacterial cell characteristics and conditions influencing their adhesion to poultry skin. J. Food Prot. 48:803-807.
Marshall, K. C. 1988. Adhesion and growth of bacteria at surfaces in oligophic habitats. Can. J. Microbiol. 34:503-506.
Marshall, K. C. 1992. Biofilms: An overview of bacterial adhesion, activity, and control at surfaces. ASM News. 58:202-207.
Marshall, K. C., R. Stout and R. Mitchell. 1971. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gene. Microbiol. 68:337-348.
McCarter, L., M. Hilmen, and M. Silverman. 1988. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell. 54: 345-351.
McEldowney, S. 1994. Effect of cadmium and zinc on attachment and detachment interactions of Pseudomonas fluorescens H2 with glass. Appl. Environ. Microbiol. 60:2759-2765.
McEldowney, S. and M. Fletcher. 1986. Variability of the influence of physicochemical factor affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol. 52:460-465.
Montgomery, M. T. and D. L. Kirchman. 1994. Induction of chitin-binding proteins during the specific attachment of the marine bacterium Vibrio harveyi to chitin. Appl. Environ. Microbiol. 60:4284-4288.
Moreno, D. A., J. R. Ibars, I. B. Beech, and C. C. Gaylarde. 1993. Biofilm formation on mild steel coupons by Pseudomonas and Desulfovibrio. Biofouling. 7: 129-139.
Morton, D. S. and J. D. Oliver. 1994. Induction of carbon starvation-induced proteins in Vibrio vulnificus. Appl. Environ. Microbiol. 60:3653-3659.
Neu, T. R. 1992. Microbial footprint and the general ability of microorganisms to label interfaces. Can. J. Microbiol. 38: 1005-1008.
Nilsson, L., J. D. Oliver and S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus from viable but nonculturable state. J. Bacteriol. 173: 5054-5059.
Notermans, S., J. A. M. A. Dormans and G. C. Mead. 1991. Contribution of surface attachment to the establishment of microorganisms in food processing plants: A review. Biofouling. 5:21-36.
Novitsky, J. A., and R. Y. Morita. 1976. Morphological characterization of small cell resulting from nutrient starvation of a psychrophilic marinre Vibrio. Appl. Environ. Microbiol. 32: 617-622.
Novitsky, J. A., and R. Y. Morita. 1977. Survival of a psychrophilic marine Vibrio under long term nutrient starvation. Appl. Environ. Microbiol. 33: 635-641.
Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57: 2640-2644.
Osman, S. F., W. F. Fett, P. Irwin, P. Cescutti, J. N. Brouillette, J. V. O''Connor. 1997. The structure of the exopolysaccharide of Pseudomonas fluorescens strain H13. Carbohydr. Res.300:323-327.
Paul, J. H. and W. H. Jeffrey. 1985. Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Appl. Environ. Microbiol.50:431-437.
Pringle, J. H., and M. Fletcher. 1986. Influence of substratum hydration and adsorbed marcomolecules on bacterial attachment to surfaces. Appl. Environ. Microbiol. 51: 1321-1325.
Pruzzo, C., A. Crippa, S. Bertone, L. Pane and A. Carli. 1996. Attachment of Vibrio alginolyticus to chitin mediated by chitin-binding protein. Microbiol. 142:2181-2186.
Quintero, E. J. and R. M. Weiner. 1995. Physical and chemical characterization of the polysaccharide capsule of the marine bacterium, Hyphomonas strain MHS-3. J. Ind. Microb. 15:347-351.
Rao, T. S., P. G. Rani, V. P. Venugopalan, and K. V. K. Nair. 1997. Biofilm formation in a frashwater environment under photic and aphotic conditions. Biofouling. 11: 265-282.
Rosenberg , M. , D. Gutnick , and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbon : a sample method for measuring cell surface hydrophobicity. FEMS Microbiol Lett. 9: 29-33.
Rosenberg, M. 1984. Ammonium sulphate enhances adherence of Escherichia coil J5 to hydrocarbon and polystyrene. FEMS Microbiol. Lett. 25:41-45.
Rosenberg, M. 1984. Bacterial adherence to hydrocarbon : a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett.22:289-295.
Rosenberg, M., E. A. Bayer, J. Delarea and E. Rosenberg. 1982a. Role of thin fimbriae in adhesion and growth of Acinetobacter calcoaceticus RRAG-1 on hexadecane. Appl. Environ. Microbiol.44:929-937.
Rosenberg, M., S. Rottem, and E. Rosenberg. 1982b. Cell surface hydrophobicity of smooth and rough Proteus mirabilis strains as determined by adherence to hydrocarbons. FEMS Microbiol. Lett. 13: 167-169.
Samain. E., M. Milas, L. Bozzi, G. D. M. Rinaudo. 1997. Simultaneous production of two different gel-forming exopolysaccharides by an Alteromonas strain originating from deep sea hydrothermal vents. Carbohydr. Polym. 34:235-241.
Sasahara, K. C. and E. A. Zottola. 1993. Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing systems. J. Food Prot. 56:1022-1028.
Schiemann, D. A., and P. J. Swanz. 1985. Epithelial cell association and hydrophobicity of Yersinia enterocolitica and related species. J. Med. Microbiol. 19: 309-315.
Schneider, R. P., and K. C. Marshall. 1994. Retention of the gram-negative marine bacterium SW8 on surface - effects of microbiol physiology, substratum nature and conditioning film. Colloids Surfaces B : Biointerfaces. 2: 387-396.
Shea, C., J. W. Nunley, J. C. Williamson, and H. E. Smith-Somerville. 1991. Comparison of the adhesion properties of Deleya marina and the exopolysaccharide-defective mutant strain DMR. Appl. Environ. Microbiol. 57: 3107-3113.
Shreve, G. S., R. H. Olsen and T. M. Vogel. 1991. Development of pure culture biofilms of P. putida on solid supports. Biotechnil. Bioeng. 37:512-518.
Smyth , C. J., P. Jonsson , E. Olsson , O. Soderlind , J. Rosongren , S. Hierten , and T. Wadstrom . 1978 . Difference in hydrophobic surface characteristicus of porcine enteropathogenic Escherichia coil with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect. Immun. 22:462-472.
Sonak, S., and N. Bhosle. 1995. Observation on biofilm bacteria isolated from aluminium panels immersed in esturarine waters. Biofouling. 8: 243-254.
Sweet, S. P., T. W. MacFarlane, and L. P. Samaranayake. 1987. Dtermination of the cell surface hydrophobicity of oral bacteria using a modified hydrocarbon adherence method. FEMS Microbiol. Lett. 48: 159-163.
Tall, B. D., R. T. Gray, and D. B. Shah. 1993. Bacterial adherence and biofilm behavior of Vibrio vulnificus. In G. W. Bailey and C. L. Reider(eds). Proceed. Ann. Meet. Of the Microscopy Soc. Of America. Pp. 378-379.
Taylor, G. T., D. Zheng, M. Lee, P. J. Troy, G. Gyananath and S. K. Sharma. 1997. Influence of surface properties on accumulation of conditioning films and marine bacteria on substrata exposed to oligotrophic waters. Biofouling. 11:31-57.
Tsurumi,K., and N. Fusetani. 1998. Effects of early fouling communities formed in the field on settlement and metamorphosis of cyprids of the barnacle , Balanus amphitite darwin. Biolouling. 12: 119-131.
Van Loosdrecht, M. C. M., J. Lyklema, W. Norde, G. Schraa and A. J. B. Zehnder. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol.53:1893-1897.
Vanhaecke, E., and J. Pijck. 1988. Bioluminescence assay for measuring the number of bacteria adhering to the hydrocarbon phase in the BATH test. Appl. Environ. Microbiol. 54: 1436-1439.
Vincent, P., P. Pignet, F. Talmont, L. Bozzi, B. Fournet, J. Guezennec, C. Jeanthon and D. Prieur. 1994. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 60:4134-4141.
Wardell, J. N.1988. Methods for the study of bacterial attachment. P.389-415. In Austin B., Methods in aquatic bacteriology. Chichester Brisbane Toronto Singapore, New York.
Whitekettle, W. K. 1991. Effects of surface-active chemical on microbial adhesion. J. Ind. Microb. 7:105-116.
Wolf, P. W. and J. D. Oliver, 1992. Temperature effects on the viable but non-culturable state of Vibrio vulnificus. FEMS Microbiol. 101: 33-39.
Wrangstadh, M., U. Szewzyk, J. Ostling and S. Kjelleberg. 1990. Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9. Appl. Environ. Microbiol. 56:2065-2072.
Yamazaki, K-ichi., K. Inukai, M. Suzuki, H. Kuga and H. Korenaga. 1998. Structural studies on a sulfated polysaccharide from an Arthrobacter sp. by NMR spectroscopy and methylation analysis. Carbohydr. Res. 305:253-260.
Zottola, E. A. 1994. Microbial attachment and biofilm formation. F. Technol. 48:107-114.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔