(3.235.11.178) 您好!臺灣時間:2021/03/05 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張晉峰
研究生(外文):Chang Chin Feng
論文名稱:曾文溪底泥中硫酸還原菌的分離鑑定及菌群分布的探討
指導教授:劉秀美劉秀美引用關係陳昭德陳昭德引用關係
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:111
中文關鍵詞:硫酸還原菌探針
外文關鍵詞:sulfate reducing bacteriaprobe
相關次數:
  • 被引用被引用:14
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物族群與群聚的生態在自然的厭氧系統中仍然留下了許多未曾探索的,例如,在複雜的厭氧系統中完全的辨識與定量所有族群的分布,並在微生物族群結構及功能(i.e.代謝活性)之間建立一連結性,這些至今仍尚未做到,並嚴重的缺乏這一方面的研究。
本論文的研究是利用傳統培養分離的方式與寡核酸探針雜交分析來探討曾文溪底泥中的硫酸還原菌。沿著曾文溪,由淡水的環境(鹽度0.0%)到海洋的環境(鹽度1.5-3.7%)選擇5個測站當作底泥採樣地點。
由Postgate的培養基從曾文溪底泥中分離出34株的硫酸還原菌利用乳酸與醋酸為生長基質。根據型態與生理生化這些菌株應該屬於Desulfovibrio與Desulfotomaculum屬的硫酸還原菌。但是經測試的結果這些菌株與Desulfovibrio與Desulfotomaculum的特徵並不完全相符,需要再利用較多其他的方法來確定這些硫酸還原菌菌株。
利用寡核酸探針探測的結果顯示,硫酸還原菌經計算高達整體生物有機體量的26%並且在乾季與濕季中呈現兩種不同的分布趨勢。在乾季中,探討Desulfobacter的探針有一增加的反應。在濕季中,探討Desulfovibrio、Desulfobulbus與Desulfobacterium的探針有一增加的反應。另一方面,在實驗期間Desulfovibrio探針的訊號一直都有被探測到。硫酸還原菌菌群結構在曾文溪底泥中於不同乾濕季節時有不同的偵測反應。將來須進一步的研究以找出這些硫酸還原菌群聚結構與所棲息環境之間的相互關係。
The ecology of microbial populations and communities in natural anaerobic systems remains largely unexplored. For example, complete identification and quantification of all contributing populations in complex anaerobic systems, which is needed to establish the link between microbial structure and function (i.e., metabolic activity), have not yet been achieved.
In this study, cultivation and oligonucleotide probe hybridization analysis were used to detect sulfate-reducing bacteria (SRB) community structures in sediments of the Tsengwen River. Along the river, from a freshwater (0.0% salinity) to an oceanic (1.5-3.7% salinity) environment, five sampling stations were chosen to collect the sediment.
34 strains of sulfate-reducing bacteria which use lactate and acetate as the substrates were isolated from these sediments. Since in this study Postgate’s medium, which was used for isolation of Desulfovibrio and Desulfotomaculum in the past was employed for isolation, these strains should belong to the genera Desulfovbirio and Desulfotomaculum. However, it is difficult to place some strains in the genera Desulfovirio or Desulfotomaculum. Other methods are needed to identify these strains.
Results with oligonucleotide probes revealed that SRB accounted for up to 26% of all organism in sediments of the Tsengwen River. Generas of SRB had two different distribution patterns in the dry season and the wet season. Signal responses from a probe designed to detect Desulfobacter sp. were higher in the dry season, while the signal responses from the probes designed to detect Desulfovibrio sp., Desulfobacter sp. and Desulfobulbus sp. were higher in the wet season. Furthermore, signal responses from a probe designed to detect Desulfovibrio sp. were detected at all experiment period. Further studies are needed to find the relationship of the SRB communities and the environments of their habitats.
目錄………………………………………………………………………i
摘要………………………………………………………………………ii
前言………………………………………………………………………1
材料與方法
實驗材料…………………………………………………………..15
實驗方法…………………………………………………………..21
結果……………………………………………………………………..42
討論……………………………………………………………………..51
參考文獻………………………………………………………………..63
附圖……………………………………………………………………..74
附表……………………………………………………………………..95
參考文獻
1. 丁澤民、王偉、張世玲、連慧瑞。1993。生物學。藝軒出版社。台北。i -x, 1-834頁。
2. 田見臻。1994。利用分子生物技術探討環境中微生物群落架構及其變化。碩士論文。中華民國,台灣,東吳大學微生物學系。1-128頁。
3. 陳致戎。1997。軟鋼在厭氧海水中生物腐蝕之研究。碩士論文。中華民國,台灣,海洋大學海洋生物研究所。i -ii, 1-52頁。
4. 張添晉、陳致谷。1993。土壤污染復育工程技術。工業污染防治。45:43-65。
5. Abdollahi, H. and J.W.T. Wimpenny. 1990. Effect of oxygen on the growth of Desulfovibrio desulfuricans. J. Gen. Microbiol., 136:1025-1030.
6. Alexander, M. 1994. Biodegradation and bioremediation. Academic press. New York. pp. i-xi,1-293.
7. Alm, E.W., D.B. Oerther, N. Larsen, D.A. Stahl and L. Raskin. 1996. The oligonucleotide probe database. Appl. Environ. Micribiol. 62:3557-3559.
8. Amann, R.I., L. Krumholz and D.A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 172:762-770.
9. Bak, F. and F. Widdle. 1986. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch. Microbiol., 146:170-176.
10. Bak, F. and N. Pfenning. 1991. Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol. Ecol., 85:43-52.
11. Balba, M.T. and D.B. Nedwell. 1982. Microbial metabolism of acetate, propionate and butyrate in anoxic sediments from the Colne Point saltmarsh. Essex, UK. J. Gen. Microbiol., 128:1415-1422.
12. Banat, I.M., E.B. Lindstrom, D.B. Nedwell and M.T. Balba. 1981. Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl. Environ. Microbiol., 42:985-992.
13. Battersby, N.S., S.J. Malcolm, C.M. Brown and S.O. Stanley. 1985. Sulphate reduction rates in freshwater lake sediments. FEMS. Microbiol. Ecol., 31:225-228.
14. Bitton, G. 1994. Wastewater microbiology. Wiley-liss. New York. pp. i-ix. 1-478.
15. Boudreau, B.P. and J.T. Westrich. 1984. The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim. Cosmochim. Acta., 48:2503-2516.
16. Bruce, K.D., W.D. Hiorns, J.L. Hobman, A.M. Osbourne, P. Strike and D.A. Ritchie. 1992. Amplification of DNA from native population of soil bacteria by using the polymerase chain reaction. Appl. Environ. Microbiol., 58:3413-3416.
17. Bryant, M.P., L.L. Campbell, C.A. Reddy and M.R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilising methanogenic bacteria. Appl. Environ. Microbiol., 33:1162-1169.
18. Canfield, D.E. and D.J. DeMarias. 1991. Aerobic sulfate reduction in microbial mats. Science. 251:1471-1473.
19. Campbell, L.L. and J.R. Postgate. 1965. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev., 29:63-359.
20. Cappenberg, T.E. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. I. Field observation. Antonie van Leeuwenhoek. 40:285-295.
21. Chrisiansen, N. and B.K. Ahring. 1996. Desulfitobacteium hafniense. sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. syst. Bacteriol., 46:442-448.
22. Cohen, Y. 1989. Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sufur interactions. pp. 22-36. In Cohen Y. and E. Rosenberg. (Eds.) Microbial mats. Physiological ecology of benthic microbial communities. Am. Soc. Microbiol. Washington.
23. Cypionka, H., F. Widdle. and N. pfennig. 1985. Survival of sulfate—reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol., 31:39-45.
24. Dannenberg, S., M. Kroder, W. Dilling and H. Cypionka. 1992. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol., 158:93-99.
25. Devereux, R., M.D. Kane, J. Winfrey and D.A. Stahl. 1992. Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol., 15:601-609.
26. Devereux, R., M. Delaney, F. Widdel and D.A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. J. Bacteriol., 171:6689-6695.
27. Devereux, R., M.E. Hines and D.A. Stahl. 1996. S cycling: characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microb Ecol., 32:283-292.
28. Dilling, W. and H. Cypionka. 1990. Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol. Lett., 71:123-128.
29. Felske, A., B. Engelen, U. Nubel and H. Backhaus. 1996. Direct ribosome isolation from soil to extract bacteria rRNA for community analysis. Appl. Environ. Microbiol., 62:4162-4167.
30. Finster, K. and J. Bak. 1993. Complete oxidation of propionate, valerate, succinate and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria. Appl. Environ. Microbiol., 59:1452-1460.
31. Frund, C. and Y. Cohen. 1992. Diurnal cycle of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol., 58:70-77.
32. Fry, N.K., J.K. Fredrickson, S. Fishbain, M. Wagner and D.A. Stahl. 1997. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl. Environ. Microbiol., 63:1498-1504.
33. Fukui, M. and S. Takiis. 1990. Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake. FEMS Microbiol Ecol., 73:317-322.
34. Gerritse, J., V. Renard, T.M.P. Gomes, P.A. Lawson, M.D. Collins and J.C. Gottschal. 1996. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol., 165:132-140.
35. Gherna, R., P. Pienta and R. Cote (ed.). 1992. American type culture collection catalogue of bacteria and phages. 18th ed. American type culture collection, Rockville, Md.
36. Hamilton, W.A. 1985. Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev., 39:195-217.
37. Hardy, J.A. and W.A. Hamilton. 1981. The oxygen tolerance of sulphate-reducing bacteria isolated from North Sea waters. Curr. Microbiol., 6:259-262.
38. Hines, M.E., R.S. Evans, B.R.S. Genthner, S.G. Willis, S. Frideman, J.N.V. Rooney and R. Deverrux. 1999. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Micribiol. 65:2209-2216.
39. Hordijk, K.A., C.P.M.M. Hagenaars and T.E. Cappenberg. 1985. Kinetic studies of bacterial sulfate reducion in freshwater sediment by high-pressure liquid chromatography and microdistillation. Appl. Environ. Microbiol., 49:434-440.
40. Ingvorsen, K. and T.D. Brock. 1982. Electron flow via sulfate reducion and methanogenesis in the hypolimnion of Lake Mendota. Limnol.Oceanoger., 27:559-564.
41. Ingvorsen, K., A.J.B. Zehnder and B.B. Jorgensen. 1984. Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl. Environ. Microbiol., 473:403-408.
42. Ingvorsen, K., J.G. Zeikus and T.D. Brock. 1981. Dynamics of bacterial sulfate reduction in a eutrophic lake. Appl. Environ. Micribiol., 42:1029-1036.
43. Iverson, W.P. 1987. Microbial corrosion of metals. Adv. Appl. Microbiol., 32:1-36.
44. Jorgensen, B.B. 1982. Mineralization of organic matter in the sea-bed - The role of sulphate reduction. Nature. 296:643-645.
45. Jorgensen, B.B. and F. Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol., 57:847-856.
46. Keith, S.M., R.A. Herbert and C.G. Harfoot. 1982. Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments. J. Appl. Bacteriol., 53:29-33.
47. Laanbroek, H.J. and N. Pfennig. 1981. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments. Arch Microbiol., 128:330-335.
48. Lee, W., Z. Lewandowski, S. Okabe, W.G. Characklis and R. Avci. 1993a. Corrosion of mild steel underneath aerobic biofilms containing sulfate reducing bacteria part I: at low dissolved oxygen conceration. Biofouling. 7:197-216.
49. Lee, W., Z. Lewandowski, M. Morrison., W.G. Characklis, R. Avci and P.H. Nielsen. 1993b. Corrosion of mild steel underneath aerobic biofilms containing sulfate reducing bacteria part II: at high dissolved oxygen concentration. Biofouling. 7:217-239.
50. Lillebak, R. 1995. Application of antisera raised against sulfate-reducing bacteria for indirect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea. Appl. Environ. Microbiol., 61:3436-3442.
51. Linkfield, T.G. and J.M. Tiedje. 1990. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J. Ind. Microbiol., 5:9-16.
52. Liu, S.-M. and C.-L. Kuo. 1996. Microbial potential for the anaerobic transformation of simple homocyclic and heterocyclic compounds in sediments of the Tsengwen River. Chem. Ecol., 12:41-56.
53. Lovley, D.R. and M.J. Klug. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl. Environ. Microbiol., 43:552-560.
54. Lovley, D.R. and M.J. Klug. 1982. Kinetic analysis of competition between sulfate-reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol. 43:552-560.
55. Lovley, D.R., J.D. Coates, J.C. Woodward and E.J.P. Phillips. 1995. Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol., 61:953-958.
56. Lovley, D.R., D.F. Dwyer and M.J. Klug. 1982. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol., 43:1373-1379.
57. Lowe, S.E., M.K. Jain and J.G. Zeikus. 1993. Biology, ecology, and biotechnological application of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrate. Microbiol. rev., 57:451-509.
58. Macfarlane, G.T. and G.R. Gibson. 1991. Sulphate-reducing bacteria. pp. 201-220. In Levett. P.N. (Eds.) Anaerobic microbiology. Oxford University Press. New York.
59. Mitchell, G.J., J.G. Jones and J.A. Cole. 1986. Distribution and regulation of nitrate and nitrite reduction by Desulfobrio and Desulfotomaculum species. Arch. Microbiol., 144:35-40.
60. More, M.I., J.B. Herrick, M.C. Silva, W.C. Ghiorse and E.L. Madsen. 1993. Quantitative cell lysis of indigenous microorganisms and rapid extraction of DNA from sediment. Appl. Environ. Microbiol., 60:1572-1580.
61. Mohn, W.W. and J.M. Tiedje. 1992. Microbiol reductive dehalogenation. Microbiol. Rev., 56:482-507.
62. Muyzer, G. and N.B. Ramsing. 1995. Molecular methods to study the organization of microbial communities. Water Sci. Technol., 32:1-9.
63. Nazina, T.N., A.E. Ivanova, L.P. Kanchaveli and E.P. Rozanova. 1988. Desulfotomaculum kuznetsovii sp. nov., a new spore-forming thermophilic methylotrophic sulfate-reducing bacterium. Mikrobiologiya. 57:823-827.
64. Nilsen, R.K., J. Beeder, T. Thorstenson and T. Torsvik. 1996. Distribution of thermophilic marine sulfate reducers in north sea oil field waters and oil reservoirs. Appl. Environ. Microbiol., 62:1793-1798.
65. Odom, J.M. 1990. Industrial and environmental concerns with sulfate-reducing bacteria. ASM News, 56:473-476.
66. Ogram, A., G.S. Sayler and T. Barkay. 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods., 7:57-66.
67. Pace, N.R., D.A. Stahl, D.J. Lane and G.J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequence. Adv. Microb. Ecol., 9:1-55.
68. Peng, C.G. and J.K. Park. 1994. Principal factors affecting microbiologically influenced corrosion of carbon steel. Corr. Sci., 50:675-6999.
69. Pfennig, N. and F. Widdle. 1994. Dissimiatory sulfate- or sulfur- reducing bacteria. pp.335-346. In N.R. Krieg and J.G. Holt. (Eds.) Bergey’s Manual of Systematic Bacteriology, Vol. 1. Williams and Wilkins. Baltimore.
70. Pfennig, N., F. Widdle and H.G. Truper. 1981. In The Prokaryotes, Vol. 1. In M.P. Starr, H. Stolp, H.G. Truper, A. Balows and H.G. Schlegel (Eds.). pp. 926-940. Springer-Verlag, New York.
71. Porteous, L.A. and J.L. Armstrong. 1991. Recovery of bulk DNA from soil by a rapid small-scale extraction method. Curr. Microbiol., 22:345-348.
72. Poulsen, L.K., G. Ballard and D.A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol., 59:1354-1360.
73. Postgate, J.R. 1984. The sulphate-reducing bacteria. 2nd ed. Cambridge, Unviversity press.
74. Postgate, J.R. and L.L. Campbell. 1966. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev., 30:38-732.
75. Purdy, K.J., T.M. Embley, S. Takll and D.B. Nedwell. 1996. Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl. Environ. Microbiol., 62:3905-3907.
76. Purdy, k.J., D.B. Nedwell, T.M. Embley and S. Takii. 1997. Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol. Ecol., 24:221-234.
77. Raskin, L., J.M. Stromley, B.E. Rittmann and D.A. Stahl. 1994. Group-specific 16S rRNA Hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol., 60:1232-1240.
78. Rhee, G.-Y. and R.C. Sokol. 1994. The fate of polychlorinated biphenyls in aquatic sediments. Great Lakes Res. Rev., 1:23-28.
79. Risatti, J.B., W.C. Capman and D.A. Stahl. 1994. Community structure of a micribiol mat: The phylogenetic dimension. Proc. Natl. Acad. Sci. USA., 91:10173-10177.
80. Rooney, -V.J.N., R. Devereux, R. Evans and M.E. Hines. 1997. Seasonal changes in the relative abundance of uncultured sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol., 63:3895-3901.
81. Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. N.Y.
82. Sanford, R.A., J.R. Cole, F.E. Loffler and J.M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol., 62:3800-3808.
83. Singleton, R.J. 1993. The sulfate-reducing bacteria: an overview. pp. 1-20. In J.M. Odom and R. Singleton (Eds.) The sulfate-reducing bacteria: contemporary perspectives. Jr. Springer-Verlag, Inc. New York.
84. Skyring, G.W. 1987. Sulfate reduction in coastal ecosytems. Geomicrobiol. J., 5:295-374.
85. Stahl, D.A., B. Flesher, H.R. Mansfield and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol., 54:1079-1084.
86. Steffan, R.J., Goksoyr, K.B. Asim and R.M. Atlas. 1988. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol., 54:2908-2915.
87. Takii, S. and M. Fukui. 1991. Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bull. Jap. Soc. Micribiol. Ecol., 6:1-8.
88. Tardy, J.C., P. Caumette, R. Matheron, C. Lanau and O. arnauld. 1996. Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol., 42:259-266.
89. Taylor, J. and R.J. Parkes. 1985. Identifity diffferent population of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J. Gen. Microbiol. 131:631-642.
90. Tebbe, C.C. and W. Vahjen. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol., 59:2657-2665.
91. Thauer, R. 1976. Limitation of microbial H2-formation via fermentation. pp.201-204. In H.G. Schlegel and J. Barnea. (Eds.) Microbial energy conversion. Goltze, Gottingen. Federal Republic of Germany.
92. Trimmer, M., K.J. Purdy and D.B. Nedwell. 1997. Process measurement and phylogenetic analysis of the sulfate reducing bacterial community of two contrasting benthic sites in the upper estuary of the Great Ouse, Norfolk, UK. FEMS Microbiol. Ecol., 24:333-342.
93. Tsai, Y.-L. and B.H. Olson. 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol., 57:1070-1074.
94. Utkin, I., D.D. Dalton and J. Wiegel. 1995. Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl. Environ. Microbiol., 61:346-351.
95. Utkin, I., C. Woese and J. Wiegel. 1994. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol., 44:612-619.
96. Vester, F. and K. Ingvorsen. 1998. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol., 64:1700-1707.
97. Winfrey, M.R. and J.G. Zeikus. 1979. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl. Environ. Microbiol., 37:244-253.
98. Widdle, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. pp.469-585. In A.J.B. Zehnder. (Eds.) Biology of anaerobic microorganisms. John Wiley and Sons, Inc. New York.
99. Widdle, F. and N. Pfennig. 1977. A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol., 112:119-122.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔