[1] B. Boashash and B. Ristic , "Use of the cross polynomial Wigner-Ville distribution for instantaneous frequency
estimation of non-linear FM signals," Proceedings of IEEE-SP International Symposium on Time-Freqnency and Time-Scale
Analysis October 1994.
[2] B. Boashash and B. Ristic ,''Relationship between the polynomial and the higher order Wigner-Ville distribution,"
IEEE Signal Processing Letters, vol. 2, no. 12, December 1995.
[3] B. Boashash and B. Ristic,''Polynomial Wigner-Ville distributions and time-varying higher-order spectra,"
Proc. IEEE-SP Int. Symp. Time-Frequency Time-Scale Anal., Victoria Canada, pp. 31-34. October 1992.
[4] B. Boashash and P. O''Shea,''Polynomial Wigner-Ville distributions and their relationship to time-varying higher
order spectra,"IEEE Trans on Signal Processing,} vol. 42, no. 1, January 1994.
[5] B. Boashash and B. Ristic,''Polynomial time-freqnency distributions and time-varying higher order spectra:
application to non-Stationary signal analysis," Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics,
pp. 2751-2755, October 1996.
[6] R. G. Baraniuk and D. L. Jones."Signal-dependent time-frequency analysis using a radiailly-Gaussian kernel." Signal Processing, vol. 32, pp. 263-284, 1993.
[7] R. G. Baraniuk and D. L. Jones, "Optimal kernels for time-frequency analysis," SPIE Symposium on Optical and Optoelectronic
Applied Science and Engineering , San Diego, California, July 8-13, 1990.
[8] R. G. Baraniuk and D. L. Jones,"A radially Gaussian, signal-dependent time-frequency representation." IEEE , in Proc, ICASSP, pp. 3181-3184 , 1991.
[9] R. G. Baraniuk and D. L. Jones,"A signal-dependent time-frequency representation: Optimal kernel design," IEEE Trans. Signal Processing, vol. 41, no. 4, pp. 1589- 1602,Apr. 1993.
[10] R. G. Baraniuk and D. L. Jones,"An adaptive optimal-kernel time-frequency representation. "IEEE , on Trans. Sig. Pro. , pp. 2361-2371, Oct 1995.
[11] R. N. Czerwinski and D. L. Jones,"Adaptive cone-kernel time-frequency analysis, "IEEE Trans. on Signal Processing,} vol. 43, no. 7, July 1995.
[12] R. N. Czerwinski and D. L. Jones, "Adaptive Short-Time Fourier Analysis. "IEEE , Signal Processing Letter}
,vol. 4, no. 2, Feb. 1997.
[13] R. N. Czerwinski and D. L. Jones, "An adaptive time-frequency representation using a cone-sharped kernel,"
Proc. IEEE ICASSP-93,} vol. 4, pp. 404-407, April 1993
[14] L. Cohen,''Generalized phase-space distribution function, "Math. Phys., vol. 7, pp. 781-786, 1966.
[15] L. Cohen and T. E. Posch, "Generalized ambiguity functions. "IEEE , in Proc, ICASSP, vol. 3, pp. 27. 6. 1-27. 6. 4, 1985.
[16] L. Cohen,''Time-frequency distributions- A review, "Proc. IEEE, vol. 77, pp. 941-981, 1989.
[17] H. I. Choi and W. J. William,''Improved time frequency representation of multicomponent signals using exponential kernels, "IEEE Trans. on A. S. S. P.,} vol. 37, pp. 862-871, 1989.
[18] T. A. C. M. Claasen and W. F. G. Mecklenbra\"uker, ''The Wigner distribution- A tool for time-frequency signal analysis, Part I : Continuous-time signals, "Phillips J. Res.,} vol. 35, pp. 217-250, 1980.
[19] T. A. C. M. Claasen and W. F. G. Mecklenbra\"uker,''The Wigner distribution- A tool for time-frequency signal analysis, Part II : Discrete-time signals, "Phillips J. Res.,} vol. 35, pp. 276-300, 1980.
[20] T. A. C. M. Claasen and W. F. G. Mecklenbra\"uker,''The Wigner distribution- A tool for time-frequency signal analysis, Part III : Relation with orther time-frequency signal transformation, "Phillips J. Res.,} vol. 35, pp. 372-389, 1980.
[21] R. Fonollosa and L. Nikias, ''Wigner higher order moment spectra: definition, properties, computation and application to transient signal analysis, "IEEE Trans. on Signal Processing,} vol. 41, no. 1, January 1993.
[22] P. Flandrin and W. Martin, ''Pseudo-Wigner estimators for the analysis of non-stationary processes,"
in Proc. IEEE ASSP Spectrum Estimation Workshop II,} Tampa, FL, November 1983, pp. 181-185.
[23] F. Hlawatsch and G. F. Boudreaux-Bartels, ''Linear and quadratic time-frequency signal representations,"
IEEE Signal Processing Magazine,} pp. 21-67, April 1992.
[24] S. Haykin, editor,''Advances in Spectral Estimation and Array Processing," volume 1, chapter 9,
Prentice Hall, Englewood Cliffs, New Jersey, 1991.
[25] D. L. Jones and T. W. Parks, "A high resolution data-adaptive time-frequency representation, "IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, no. 12, pp. 2127- 2135, Dec. 1990.
[26] P, J. Loughlin, J. W. Pitton, and L. E. Atlas, "Bilinear time-frequency representation: New insights and properties,"
IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 750- 767, Feb. 1993.
[27] M. Roessgen and B. Boashash, ''Time-frequency peak filtering applied to FSK signals, "Proceedings of IEEE-SP International Symposium on Time-Freqnency and Time-Scale Analysis, October 1994.
[28] LJ. Stankovi\''c, "On the realization of the polynomial Wigner-Ville distribution for multicomponent signals," {\sl IEEE Signal Processing Letters vol. 5, no. 7, July 1998.
[29] LJ. Stankovi\''c, S. Stankovi\''c and I. Djurovi\''c, ''An architecture for realization of the cross-Term free polynomial Wigner-Ville distribution, "IEEE International Conference on Acoustics, Speech, and Signal Processing,}
pp. 2053-2056, April 1997.
[30] LJ. Stankovi\''c, S. Stankovi\''c and Z. Uskokovi\''c, "S-method with variable convolution window,"
Proc. of 3rd Intenaional Symposium on Time-Frequency and Time-Scale Analysis, pp. 185-188, June 1996.
[31] LJ. Stankovi\''c, ''A method for improved distribution concentration in the time-frequency analysis of
multicomponent signals using the L-Wigner distribution, "IEEE Trans on Signal Processing, vol. 43, no. 5, May 1995.
[32] LJ. Stankovi\''c, ''A multitime definition of the Wigner higher order distribution: L-Wigner distribution,"
IEEE Signal Processing Letters, vol. 1, no. 7, July 1994.
[33] LJ. Stankovi\''c and S. Stankovi\''c, ''An analysis of instantaneous frequency representation using time-frequency distributions - generalized Wigner distribution, "IEEE Trans on Signal Processing, vol. 43, no. 2, February 1995.
[34] Xiaobing Sun and Zheng Bao, "On the Interpretation of Wigner Distribution by STFT, "IEEE 3rd Int. Conf. on Signal Processing vol. 1,pp. 367-370, 1996.
[35] J. Ville, ''Th\''eorie at applications de la notion de signal analytique, "Cables et Transmission, vol. 20A, pp. 61-74, 1948.
[36] E. Wigner, ''On the quantam correction for thermodynamic equilibrium, "Phys. Rev., vol. 40, pp. 749-759, 1932.
[37] Kai-Bor Yu and Siuling Cheng, ''Signal synthesis from pseudo-Wigner distribution and applications,"
IEEE Trans. Acoust., Speech, Signal Processing. vol. ASSP-35, no. 9, September 1987.
[38] Y. Zhzo, L. E. Atlas, and R. J. Marks, ''The use of cone-sharped kernels for generalized time-frequency
representations of nonstationary signals, "IEEE Trans. Acoustic, Speech, Signal Processing, vol. 38, no. 7, pp. 1084-
1091, July 1990.
[39] 陳建安, "最佳高斯核心函數之時頻方法應用於聲波訊號偵測, "國立臺灣海洋大學電機工程研究所碩士論文, 86, 6.[40] 黃皇都, "平滑式魏格納-韋立分佈計算法之改良及應用, "國立臺灣海洋大學電機工程研究所碩士論文, 85, 6.[41] 李玉山, "多項式魏格納-韋立分佈計算法之改良及應用, "國立臺灣海洋大學電機工程研究所碩士論文, 87, 6.