(54.236.58.220) 您好!臺灣時間:2021/03/05 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李建裕
研究生(外文):Chien-Yu Li
論文名稱:適應性多項式魏格納分佈演算法之改進與應用
論文名稱(外文):Improved Algorithms of the Adaptive Polynomial Wigner Distribution and Their Applications
指導教授:呂福生
指導教授(外文):Fu-Sheng Lu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:97
中文關鍵詞:魏格納-韋立分佈短時距傅立葉轉換多項式魏格納-韋立分佈高階L魏格納分佈
外文關鍵詞:Wigner-Ville distribution (WVD)short-time Fourier Transform (STFT)polynomial Wigner-Ville distribution (PWVD)L-Wigner distribution (LWD)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
魏格納-韋立分佈具有高訊號解析度,但交關項干擾嚴重,而對高階非線性FM訊號也會有能量擴散效應;短時距傅立葉轉換無交關項干擾,但解析度卻不佳。因此提出多項式魏格納分佈及高階L魏格納分佈,以解決在線性和高階非線性FM訊號的能量擴散效應,並應用短時距傅立葉轉換之架構推導出修正型多項式魏格納分佈及修正型高階L魏格納分佈,除可保有高能量集中性並能有效消除交關項。雖然修正型演算法可提高魏格納-韋立分佈的訊號解析度,但由於修正型演算法的窗長度是固定的,因此無法適應不同類型訊號進行解析,造成解析度及抗雜訊能力受到限制,我們結合適應性演算法得到適應性高階L魏格納與適應性多項式魏格納分佈,使能在每個時間依訊號特性去調整窗長度,達到較佳解析效果並增強抗雜訊能力。另外亦修正短時距傅立葉轉換在每個時刻依時頻分佈函數所定義不明點平面的特性,設計最佳長度的核心函數,利用所得的最佳長度去調整短時距傅立葉轉換的窗長度,藉此提升短時距傅立葉轉換的解析度,達到適應性的短時距傅立葉轉換。
我們更將所發展的方法以LabVIEW數位信號處理軟體進行空氣實驗, 並由模擬與實驗結果,驗證所提方法之可行性與正確性。
The Wigner-Ville Distribution (WVD) has high resolution for monocomponent and linear FM Signals, but it has severe cross-term interference. The short-time Fourier Transform (STFT) dose not have cross-terms problem, but it has bad resolution. The polynomial WVD (PWVD) and higher order LWD are proposed to resolve the optimal energy concentration of WVD for processing higher order nonlinear FM signals. In order to avoid cross-term interference, we use STFT to established PWVD and LWD, and it results in modified PWVD and modified LWD. However, for noisy nonstationary signals, the modified algorithms still can not get high resolution. To enhance the performance of modified PWVD and modified LWD methods, the window length used in computation should be property selected according to the signal. These adaptive algorithms have better performace for nonstationary signal containated by noise. Furthermore, we introduced a technique to adaptively optimize the cone kernel distribution (CKD) for STFT by adjusting the cone length in response to changing signal. The resulting adaptive STFT shares many desirable properties with adaptive CKD and STFT.
Finally, the LabVIEW language is also used to implement the derived adaptive algorithm, and some experiments for nonstationary signals analysis using the adaptive algorithm are conducted.
第一章 緒論 1
1.1 簡介 .................................................................................................................................................... 1
1.2 相關研究文獻 .................................................................................................................................... 2
1.3 研究背景與動機 ................................................................................................................................ 3
1.4 本論文各章節要點概述 .................................................................................................................... 3
1.5 本論文專有名詞之縮寫 .................................................................................................................... 4
第二章 時頻分佈函數 ................................................................................................................................ 6
2.1 簡介 .................................................................................................................................................... 6
2.2 短時距傅利葉轉換 ............................................................................................................................ 7
2.3 小波轉換 ............................................................................................................................................ 9
2.4 魏格納-韋立分佈 ............................................................................................................................... 11
2.5 不明點函數 ........................................................................................................................................ 13
2.6 時頻分佈函數 ................................................................................................................................... 16
2.7 常見之時頻分佈函數 ....................................................................................................................... 17
2.8 時頻分佈函數之特性 ....................................................................................................................... 19
第三章 適應性多項式魏格納-韋立分佈 .................................................................................................. 23
3.1 簡介 .................................................................................................................................................... 23
3.2 多項式魏格納-韋立分佈 ................................................................................................................... 24
3.2.1 魏格納-韋立分佈 ............................................................................................................................ 25
3.2.2 多項式魏格納-韋立分佈 ................................................................................................................ 26
3.3 修正型L-魏格納分佈 ......................................................................................................................... 28
3.3.1 L-魏格納分佈 .................................................................................................................................. 28
3.3.2 假性L-魏格納分佈 .......................................................................................................................... 30
3.3.3 修正型L-魏格納分佈 ..................................................................................................................... 32
3.4 修正型多項式魏格納分佈 ................................................................................................................ 33
3.5 適應性高階L-魏格納 ......................................................................................................................... 35
3.6 適應性多項式魏格納分佈 ................................................................................................................ 38
3.7 電腦模擬 ............................................................................................................................................ 40
第四章 適應性短時距快速傅利葉轉換 ................................................................................................... 56
4.1 簡介 .................................................................................................................................................... 56
4.2 短時距傅利葉轉換 ............................................................................................................................ 57
4.3 即時遞迴演算法的分析 .................................................................................................................... 59
4.4 適應性錐形分佈函數 ........................................................................................................................ 61
4.4.1 短時距不明點函數 ......................................................................................................................... 62
4.4.2 錐形核心長度的最佳化 ................................................................................................................. 62
4.4.3 CKD即時處理的更新方程式 ......................................................................................................... 64
4.5 適應性短時距快速傅利葉轉換 ........................................................................................................ 65
4.6 電腦模擬 ............................................................................................................................................ 67
第五章 聲波訊號實驗 ............................................................................................................................... 76
5.1 簡介 .................................................................................................................................................... 76
5.2 LabVIEW簡介及實驗架構 ................................................................................................................ 76
5.3 實驗結果 ............................................................................................................................................ 77
5.3.1 合成聲波實驗 ................................................................................................................................. 78
5.3.2 聲音資料的辨識 ............................................................................................................................. 79
第六章 結論與未來發展方向 ................................................................................................................... 89
6.1 結論 .................................................................................................................................................... 89
6.2 未來發展方向 .................................................................................................................................... 90
[1] B. Boashash and B. Ristic , "Use of the cross polynomial Wigner-Ville distribution for instantaneous frequency
estimation of non-linear FM signals," Proceedings of IEEE-SP International Symposium on Time-Freqnency and Time-Scale
Analysis October 1994.
[2] B. Boashash and B. Ristic ,''Relationship between the polynomial and the higher order Wigner-Ville distribution,"
IEEE Signal Processing Letters, vol. 2, no. 12, December 1995.
[3] B. Boashash and B. Ristic,''Polynomial Wigner-Ville distributions and time-varying higher-order spectra,"
Proc. IEEE-SP Int. Symp. Time-Frequency Time-Scale Anal., Victoria Canada, pp. 31-34. October 1992.
[4] B. Boashash and P. O''Shea,''Polynomial Wigner-Ville distributions and their relationship to time-varying higher
order spectra,"IEEE Trans on Signal Processing,} vol. 42, no. 1, January 1994.
[5] B. Boashash and B. Ristic,''Polynomial time-freqnency distributions and time-varying higher order spectra:
application to non-Stationary signal analysis," Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics,
pp. 2751-2755, October 1996.
[6] R. G. Baraniuk and D. L. Jones."Signal-dependent time-frequency analysis using a radiailly-Gaussian kernel." Signal Processing, vol. 32, pp. 263-284, 1993.
[7] R. G. Baraniuk and D. L. Jones, "Optimal kernels for time-frequency analysis," SPIE Symposium on Optical and Optoelectronic
Applied Science and Engineering , San Diego, California, July 8-13, 1990.
[8] R. G. Baraniuk and D. L. Jones,"A radially Gaussian, signal-dependent time-frequency representation." IEEE , in Proc, ICASSP, pp. 3181-3184 , 1991.
[9] R. G. Baraniuk and D. L. Jones,"A signal-dependent time-frequency representation: Optimal kernel design," IEEE Trans. Signal Processing, vol. 41, no. 4, pp. 1589- 1602,Apr. 1993.
[10] R. G. Baraniuk and D. L. Jones,"An adaptive optimal-kernel time-frequency representation. "IEEE , on Trans. Sig. Pro. , pp. 2361-2371, Oct 1995.
[11] R. N. Czerwinski and D. L. Jones,"Adaptive cone-kernel time-frequency analysis, "IEEE Trans. on Signal Processing,} vol. 43, no. 7, July 1995.
[12] R. N. Czerwinski and D. L. Jones, "Adaptive Short-Time Fourier Analysis. "IEEE , Signal Processing Letter}
,vol. 4, no. 2, Feb. 1997.
[13] R. N. Czerwinski and D. L. Jones, "An adaptive time-frequency representation using a cone-sharped kernel,"
Proc. IEEE ICASSP-93,} vol. 4, pp. 404-407, April 1993
[14] L. Cohen,''Generalized phase-space distribution function, "Math. Phys., vol. 7, pp. 781-786, 1966.
[15] L. Cohen and T. E. Posch, "Generalized ambiguity functions. "IEEE , in Proc, ICASSP, vol. 3, pp. 27. 6. 1-27. 6. 4, 1985.
[16] L. Cohen,''Time-frequency distributions- A review, "Proc. IEEE, vol. 77, pp. 941-981, 1989.
[17] H. I. Choi and W. J. William,''Improved time frequency representation of multicomponent signals using exponential kernels, "IEEE Trans. on A. S. S. P.,} vol. 37, pp. 862-871, 1989.
[18] T. A. C. M. Claasen and W. F. G. Mecklenbra\"uker, ''The Wigner distribution- A tool for time-frequency signal analysis, Part I : Continuous-time signals, "Phillips J. Res.,} vol. 35, pp. 217-250, 1980.
[19] T. A. C. M. Claasen and W. F. G. Mecklenbra\"uker,''The Wigner distribution- A tool for time-frequency signal analysis, Part II : Discrete-time signals, "Phillips J. Res.,} vol. 35, pp. 276-300, 1980.
[20] T. A. C. M. Claasen and W. F. G. Mecklenbra\"uker,''The Wigner distribution- A tool for time-frequency signal analysis, Part III : Relation with orther time-frequency signal transformation, "Phillips J. Res.,} vol. 35, pp. 372-389, 1980.
[21] R. Fonollosa and L. Nikias, ''Wigner higher order moment spectra: definition, properties, computation and application to transient signal analysis, "IEEE Trans. on Signal Processing,} vol. 41, no. 1, January 1993.
[22] P. Flandrin and W. Martin, ''Pseudo-Wigner estimators for the analysis of non-stationary processes,"
in Proc. IEEE ASSP Spectrum Estimation Workshop II,} Tampa, FL, November 1983, pp. 181-185.
[23] F. Hlawatsch and G. F. Boudreaux-Bartels, ''Linear and quadratic time-frequency signal representations,"
IEEE Signal Processing Magazine,} pp. 21-67, April 1992.
[24] S. Haykin, editor,''Advances in Spectral Estimation and Array Processing," volume 1, chapter 9,
Prentice Hall, Englewood Cliffs, New Jersey, 1991.
[25] D. L. Jones and T. W. Parks, "A high resolution data-adaptive time-frequency representation, "IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, no. 12, pp. 2127- 2135, Dec. 1990.
[26] P, J. Loughlin, J. W. Pitton, and L. E. Atlas, "Bilinear time-frequency representation: New insights and properties,"
IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 750- 767, Feb. 1993.
[27] M. Roessgen and B. Boashash, ''Time-frequency peak filtering applied to FSK signals, "Proceedings of IEEE-SP International Symposium on Time-Freqnency and Time-Scale Analysis, October 1994.
[28] LJ. Stankovi\''c, "On the realization of the polynomial Wigner-Ville distribution for multicomponent signals," {\sl IEEE Signal Processing Letters vol. 5, no. 7, July 1998.
[29] LJ. Stankovi\''c, S. Stankovi\''c and I. Djurovi\''c, ''An architecture for realization of the cross-Term free polynomial Wigner-Ville distribution, "IEEE International Conference on Acoustics, Speech, and Signal Processing,}
pp. 2053-2056, April 1997.
[30] LJ. Stankovi\''c, S. Stankovi\''c and Z. Uskokovi\''c, "S-method with variable convolution window,"
Proc. of 3rd Intenaional Symposium on Time-Frequency and Time-Scale Analysis, pp. 185-188, June 1996.
[31] LJ. Stankovi\''c, ''A method for improved distribution concentration in the time-frequency analysis of
multicomponent signals using the L-Wigner distribution, "IEEE Trans on Signal Processing, vol. 43, no. 5, May 1995.
[32] LJ. Stankovi\''c, ''A multitime definition of the Wigner higher order distribution: L-Wigner distribution,"
IEEE Signal Processing Letters, vol. 1, no. 7, July 1994.
[33] LJ. Stankovi\''c and S. Stankovi\''c, ''An analysis of instantaneous frequency representation using time-frequency distributions - generalized Wigner distribution, "IEEE Trans on Signal Processing, vol. 43, no. 2, February 1995.
[34] Xiaobing Sun and Zheng Bao, "On the Interpretation of Wigner Distribution by STFT, "IEEE 3rd Int. Conf. on Signal Processing vol. 1,pp. 367-370, 1996.
[35] J. Ville, ''Th\''eorie at applications de la notion de signal analytique, "Cables et Transmission, vol. 20A, pp. 61-74, 1948.
[36] E. Wigner, ''On the quantam correction for thermodynamic equilibrium, "Phys. Rev., vol. 40, pp. 749-759, 1932.
[37] Kai-Bor Yu and Siuling Cheng, ''Signal synthesis from pseudo-Wigner distribution and applications,"
IEEE Trans. Acoust., Speech, Signal Processing. vol. ASSP-35, no. 9, September 1987.
[38] Y. Zhzo, L. E. Atlas, and R. J. Marks, ''The use of cone-sharped kernels for generalized time-frequency
representations of nonstationary signals, "IEEE Trans. Acoustic, Speech, Signal Processing, vol. 38, no. 7, pp. 1084-
1091, July 1990.
[39] 陳建安, "最佳高斯核心函數之時頻方法應用於聲波訊號偵測, "國立臺灣海洋大學電機工程研究所碩士論文, 86, 6.
[40] 黃皇都, "平滑式魏格納-韋立分佈計算法之改良及應用, "國立臺灣海洋大學電機工程研究所碩士論文, 85, 6.
[41] 李玉山, "多項式魏格納-韋立分佈計算法之改良及應用, "國立臺灣海洋大學電機工程研究所碩士論文, 87, 6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔