跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王復台
研究生(外文):Fu-Tai Wang
論文名稱:強健型離散小波轉換於可適性密度估測之應用
論文名稱(外文):The Application of the Robust Discrete Wavelet Transform to Adaptive Density Estimation
指導教授:張順雄張順雄引用關係
指導教授(外文):Shun-Hsyung Chang
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:138
中文關鍵詞:小波轉換Zak轉換比例函數強健型離散小波轉換多路徑環境可適性密度估測訊號偵測
外文關鍵詞:Wavelet transformZak transformScaling functionRobust discrete wavelet transformMultipath environmentAdaptive density estimationSignal detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
小波轉換利用原型小波基底函數的擴展與收縮,在時間-比例平面上形成一組富有彈性的視窗,且在符合Constant-Q濾波原理之下,使得訊號之高、低頻率成份的解析皆有良好的效果。離散小波轉換更具有不少優點,例如它稀疏的取樣網格使得轉換更有效率,以及具區域化的基底函數則非常適於非穩態信號處理。而強健型離散小波轉換則使得離散小波轉換不但保存上述優點之外,更具有位移不變的特性。使得DWT在多重路徑的環境下,即多個信號成份各自有不同延遲時間時, 更有利於雷達或聲納的應用。
可適性密度估測亦可用來偵測瞬時信號, 偵測對象可為水下聲音,如鯨、海豚響聲等。響聲信號經小波拆解並予以整合後,利用整合資料之聯合分佈的遞迴密度估測進行信號偵測工作。在遞迴過程中,任何有別於此可適性密度估測者,即視為最具可能性的瞬時信號。
本論文即將強健型離散小波轉換應用到可適性密度估測,以期達到在多重路徑及水下背景環境噪音中,以偵測出信號的存在。

Wavelet transform is one way which utilizes dilation and contraction of prototype wavelet basis function, and forming a set of windows which is full of flexibility on the time--scale plane. Its filtering effect in the frequency domain does agree the constant--Q theorem and it has a good effect on the analysis of high or low component of signal. The discrete wavelet transform (DWT) is attractive for many reasons. Its sparse sampling grid eliminates redundancy and is very efficient. Its localized basis functions are well suited for processing non--stationary signals such as transients. Robust discrete wavelet transform (RDWT) provides a solution to the translation invariance problem while maintaining its other attractive attributes. Its translation
invariant properity suits applications such as radar and sonar, particularly in a multipath environment where numerous signal components arrive with arbitrary delays.
We consider the use of adaptive density estimation to a common signal processing, that of detecting transient features in sound recordings that contain interference. In this particular case, the data are obtained from various types of underwater sounds. Using recursive density estimation of the joint distrbution of certain summary features of its wavelet decomposition, we utilize an adaptive density estimation of the ackground interference. The observations considered to be outliers from this density estimate at any time are then flagged as potential"signals".
This thesis intends to apply the robust discrete wavelet transform to adaptive density estimation in order to detect signals in a multipath environment and to detect intermittent departures (potential"signals") from the background sound environment.

第一章 緒論
1.1 簡介與研究動機
1.2 相關研究與國內外研究情形
1.3 各章節之內容概要
第二章 小波概論
2.1 從傅氏分析看小波分析
2.2 積分小波轉換與時頻分析
2.3 反求式與對偶函數
2.4 多解析分析
第三章 多解析空間與信號空間
3.1 多解析空間
3.1.1 比例函數
3.1.2 小波函數
3.1.3 比例函數的特性
3.1.4 小波的特性
3.1.5 比例函數的生成
3.2 有限支持之正規小波參數化
3.2.1 正規小波
3.2.1 正規小波參數化
3.2.1 參數化設計實例
3.3 隨機程序之動量估測
3.3.1 平均值與相關函數之估計
3.3.2 相關矩陣之估計
3.4 離散 Karhunen-Loeve 轉換
3.4.1 DKLT介紹
3.4.2 DKLT之最佳化表示式
第四章 強健型離散小波轉換
4.1 子空間位移不變性
4.1.1 多路徑信號之偵測
4.1.2 離散小波轉換
4.1.3 可位移性之定義
4.2 位移誤差之比較
4.2.1 Zak轉換
4.2.2 位移誤差
4.2.3 能量分佈密度函數ESD
4.3 位移不變之比例函數的製作
4.3.1 整型演算法
4.3.2 位移不變之比例函數
4.3.3 整型演算法於db3位移不變之比例函數製作
第五章 強健型離散小波轉換於可適性密度估測之應用
5.1 信號於多路徑干擾下的偵測
5.1.1 多路徑干擾
5.1.2 多路徑干擾之偵測模擬
5.2 可適性密度估測
5.2.1 離散小波轉換
5.2.2 小波拆解與信號偵測
5.2.3 可適性密度估測
5.3 強健型離散小波轉換於可適性密度估測之應用
第六章 結論及未來研究方向
參考文獻

D. N. Maclennan and E. J. Simmonds, Fisheries Acoustics, London : Chapman and Hall, 1992.
A. Grossman and J. Morlet, "Decomposition of Hardy functions into Square integrable wavelets of constant shape," SIAM J. Math Anal., vol. 15, no. 4, pp. 723-736, July 1984.
Y. Meyer,"Principle d'incertitute, bases hilbertiennes et algebres d'operateurs," Bourbaki Seminar, no. 662, 1985-1986.
O. Rioul and M. Vetterlk, "Wavelets and Signal processing," IEEE Signal Processing Magazine, pp. 14-38, Oct. 1991.
I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. Pure Appl. Math., vol. 41, pp. 909-996, 1988.
I. Daubechies, Ten Lectures on Wavelets, CBMS NSF series Appl. Math., SIAM, 1991.
S. G. Mallat,"A theory of multiresolution signal decomposition: the wavelet representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no.7, pp. 674-693, July 1989.
M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice Hall Englewood Cliffs, NJ 1995.
S. Mallat and F. Falzon,"Analysis of low bit rate image transform coding," IEEE Trans. Signal Proc., Special Issue on Wavelets. January 1998.
D. Donoho, S. Mallat, and R. von Sachs,"Estimating covariances of locally stationary processes: Consistency of best basis method,"in IEEE Conference on Time-Freqency/Time-Scale Methods, Paris, July. 1996.
L. C. Ludeman, Fundamentals of Digital Signal Processing, Cambridge: Harper \& Row, 1986.
M. J. Smith and R. M. Mersereau, Introduction to Digital Signal Processing, Wiley, New York, 1992.
B. Boashash,"Time-frequency signal analysis,"in Advances in Spectrum Analysis and Array Processing, ed. S. Haykin, Prentice--Hall, pp. 418-517, Englewood Cliffs, NJ 1990.
L. Cohen,"Time-frequency distributions---a review," Proceedings of the IEEE, 77, pp. 941-981, 1989.
D. L. Jones and T. W. Parks,"A resolution comparison of several time-frequency representations," IEEE Trans. on Signal Processing, 40, pp. 413-420, 1992.
D. L. Donoho,"Non-linear wavelet methods for recovery of signals, denstites and spectra from indirect and noisy data,"in Proceedings of Symposia in Applide Mathematics: Different Perspectives on Wavelets, vol. 47, ed. I. Daubechies, San Antonio: American Mathematical Society, pp. 173-205, 1993.
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard,"Wavelet shrinkage: Asymptopia?" Journal of the Royal Statistical Society, Ser. B, 57, pp. 301-369, 1996.
Y. Wang,"Jump and sharp cusp detection by wavelets," Biometrika, 82, pp. 385-397, 1995.
F. Abramovich, T. Sapatinas and B. W. Silverman,"Wavelet thresholding via a bayesian approach,"Technical Report, University of Bristol, U.K., Dept. of Mathematics, 1996.
G. P. Nason,"Wavelet shrinkage using cross-validation," Journal of the Royal Statistical Society, Ser. B, 58, pp. 463-479, 1996.
R. von Sachs, G. Nason and G. Kroisandt,"Spectral representation and estimation for locally stationary wavelet processes,"in Proceedings of the Workshop on Spline Functions and Wavelets, Montreal, Canada, April 1996.
M. H. Neumann and R. von Sachs,"Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra," The Annals of Statistics, 25, pp. 38-76, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top