(3.237.234.213) 您好!臺灣時間:2021/03/09 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施育民
研究生(外文):Yu-Min Shih
論文名稱:自行對準T型閘微波場效電晶體
論文名稱(外文):Self-Aligned T-gate Microwave FET
指導教授:羅文雄羅文雄引用關係
指導教授(外文):W. S. Lour
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:51
中文關鍵詞:自行對準T型閘微波場效電晶體磷化銦鎵/砷化鎵異質結構轉倒值高頻特性降低寄生電阻與電容元件的線性度短閘極寬度
外文關鍵詞:Self-Aligned T-gate Microwave FETInGaP/GaAs heterojunction structuretransconductancefrequency-performancereduced parasitic resistance and capacitancedevice linearityreduced gate length
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,我們使用磷化銦鎵/砷化鎵異質結構,來探討自行對準T型閘駝峰式場效電晶體。和傳統的駝峰式場效電晶體比起來,以磷化銦鎵/砷化鎵異質結構低參雜之通道,來做成一高行能駝峰式二極體,而能表現出高位障之特性。在者,高參雜之磷化銦鎵層被使用來加強轉倒值,且改善元件的線性度。藉由磷化銦鎵/砷化鎵層之高選擇性蝕刻,磷化銦鎵/砷化鎵異質結構之過蝕刻製程,提供自行對準T型閘與短閘極寬度之可行性。其次,由於所探討結構之降低寄生電阻與電容,高頻特性可獲得改善。此外,P型磷化銦鎵層之高導帶不連續特性,可使電子侷限能力更好,此可克服因自行對準T型閘駝峰式場效電晶體所伴隨之小崩潰電壓問題。以此材料與有效閘極寬度為1.5×100 (0.6×100) 平方微米,其得自2×100 (1×100) 平方微米之閘極金屬長度。此可知外質轉倒為78 (80) mS/mm,單位功率增益頻率為9 (19.5) 和 28 (30) GHz。

In this thesis, we present the performance of self-aligned T-gate camel-diode field effect transistors using n+-GaAs/N+-InGaP/d(P+)-InGaP/n-GaAs heterojunction structure. As compared with the conventional CAMFET
, a low-doped active channel along with n+-GaAs/N+-InGaP/d(P+)-InGaP layers is used to form a high-performance
camel diode, which exhibits a large potential barrier. In addition, the n+/N+/d(P+) layers doped heavily are used to
enhance the transconductance, and to improve the device linearity. By highly selective etch between the InGaP and
GaAs layers, the fabrication of over-etching n+-GaAs/N+-InGaP structure is employed to offer the implement of
self-aligned T-gate with a reduced gate length. And next, due to the reduced parasitic resistance and capacitance of
this studied structure, the improved frequency-performances are obtained.Moreover, the d(P+)-InGaP layer offers
a high valence band, offset potential as a barrier of hole; as well as an enhanced conduction band, for better election
confinement, which overcome the inherent problem of small breakdown voltage associated with the structure of
the self-aligned T-gate camel-diode heterojunction field effect transistors. A fabricated device using this material
structure with effective gate dimension of 1.5’100 (0.6’100) um2 obtained from 2’100 (1’100) um2 gate
metal length. It is found to have an extrinsic transconductance, unity-current gain frequency, and unity-power gain
frequency of 78(80) mS/mm, 9 (19.5), and 28 (30) GHz, respectively.

Abstract
Table Captions
Figure Captions
Chapter 1 Introduction
Chapter 2 Investigation of Self-Aligned T-gate
2-1 Introduction
2-2 Device Fabrication
2-3 Experimental Results and Discussion
2-4 Conclusions
Chapter 3 InGaP/GaAs CAMFET using n+/N+/d(P+)/n structure
3-1 Introduction
3-2 Device Structure and Fabrication
3-3 Experimental Results and Discussion
3-4 Theoretical Consideration and Analysis of CAMFET
3-5 Conclusions
Chapter 4 Conclusions and Expectations
References
Figure Captions

[1] D. A. Figueredo, M. P. Zurakowski, S. S. Elliott, W. J. Anklam, and S. R. Sloan, " GaAs semiconductor-insulator field effect transistor with a planar-doped barrier gate ", Appl. Phys. Lett., vol. 52, no. 17, pp. 1395-1397, 1988.
[2] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, " High-performance camel-gate field effect transistor using high-medium-low doped structure ", Appl. Phys. Lett., vol. 67, no. 18, pp. 2636-2638, 1995.
[3] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, " Influence of channel doping-profile on camel-gate field effect transistor ", IEEE Trans. Electron Devices, vol. ED-43, no. 6, pp. 871-876, 1996.
[4] W. S. Lour, " High-gain, low-offset-voltage and zero potential spike by InGaP/GaAs d-doped single heterojunction bipolar transistor (d-SHBT), IEEE Trans. Electron Devices, vol. ED-40, no. 2, pp. 346-348, 1997.
[5] Y. S. Lin, S. S. Lu, T. P. Sun, " High-linearity high-current-drivability Ga0.51In0.49P/GaAs MISFET using Ga0.51In0.49P airbridge gate structure grown by GSMBE ", IEEE Electron Device Lett., vol. 16, no. 11, pp. 518-520, 1995.
[6] J. M. Shannon, " A majority-carrier camel diode ", Appl. Phys. Lett, vol. 35, pp.63-65, 1979.
[7] R. E. Thorne, S. L. Su, R. J. Fisccher, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkoc, " Analysis of camel gate FET's (CAMFET's), " IEEE Trans. Electron Devices, vol. ED-30, no. 3 pp. 212-227, 1983.
[8] TROMMER, D., UMBACH, A., PASSENBERG, W. MEKONNEN, and G. UNTERBORSCH, G.: 'Superior microwave performance of InGaAs JFET's grown by MBE', Electron. Lett., 1990, 26, pp. 734-736.
[9] LIN, Y.S., LU, S. S., and SUN, T.P.: 'High-linearity high-current drivability Ga0.51In0.49P/GaAs MISFET using Ga0.51In0.49P airbridge gate structure grown by GSMBE', IEEE Electron Device Lett., 1995, 16, pp. 518-520.
[10] LOUR, W.S., CHANG, W.L., YOUNG, S.T., and LIU, W.C.: 'Improved breakdown in LP-MOCVD grown n+-GaAs/d(P+)-GaInP/n-GaAs heterojunction camel-gate FET', Electron. Lett., 1998, 34, pp. 814-815.
[11] R. E. Thorne, S. L. Su, W. Kopp, R. Fischer, T. J. Drummond, and H. Morkoc, "Normally-on and normally-off camel diode gate GaAs field effect transistors for large scale integration", J. Appl. Phys., vol. 53, no. 8, pp. 5951-5958, 1982.
[12] Sze, S. M., Physics of Semiconductor Devices, 2nd edition, New York: Wiley, 1983.
[13] Chang, C. S. and D. Y. Day, "Analytical Theory for Current-Voltage Characteristics and Field Distribution of GaAs MESFET's, " IEEE Trans. Electron Devices, vol. 36, 1989, pp. 269.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔