跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳安智
研究生(外文):An-Chi Wu
論文名稱:柴油機改用液化石油氣為燃料之研究
論文名稱(外文):A Study on an LPG-fueled Diesel Engine
指導教授:鄭 元 良
指導教授(外文):Yuan-Liang Jeng
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:液化石油氣柴油引擎壓縮比空燃比點火正時廢氣排放輸出扭力耗油量
外文關鍵詞:LPGDiesel engineCompression RatioAir/Fuel RatioIgnition TimingExhaust EmissionsOutput TorqueFuel Consumption
相關次數:
  • 被引用被引用:6
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
液化石油氣為重要之替代性燃料,我國政府為降低都會區空氣污染,已開放使用液化石油氣為汽油小客車之燃料。柴油引擎廣泛應用於車輛、建築、農漁業、發電等機械,若改用液化石油氣為燃料亦深具降低廢氣排放之潛力。
改用液化石油氣為燃料之柴油引擎,必須將引擎替換成火星塞點火方式,可在不同操作狀態下自由調整點火正時。液化石油氣之辛烷值雖高,但應用於柴油引擎必須降低壓縮比以避免爆震發生。已有研究顯示汽油引擎改用丙烷燃料後,所採用之壓縮比為11.7或更低。因此本論文將一具單氣缸公用柴油引擎改用液化石油氣燃料,以電子控制之火星塞點火方式,並改變其壓縮比為10至14不等,以閉迴路方式控制空燃比於稀薄燃燒狀態進行測試,期待找出最佳引擎性能之壓縮比及空燃比,並進一步降低耗油量與廢氣排放。
實驗結果顯示壓縮比在11,12時制動馬力較大,在壓縮比14時引擎有發生爆震現象,並且壓縮比愈高,碳氫化合物排放量愈多。引擎採用稀薄燃燒,以相對空燃比為1.1之輸出扭矩及馬力較大,且有效降低CO與HC排放量。
Liquefied Petroleum gas is an important alternative fuel. The government has practiced the policy of encouraging LPG-fueled vehicles to reduce the air pollution of metropolitan area. Diesel engines are extensively applied on trucks, power plants, and on construction, agricultural machinery. It also possesses a high potential to reduce exhaust emissions if these diesel engines are changed to fuel with LPG.
An LPG-fueled diesel engine must change the ignition method to spark-ignition. The ignition timing can be freely adjusted under different operating conditions. Although LPG has a high octane number, the compression ratio must be reduced for an LPG-fueled diesel engine to avoid the occurrence of knocking. It has been shown that in some study the compression ratio of LPG-fueled gasoline engine is 11.7 or lower. Therefore, this thesis modifies a single-cylinder utility diesel engine to be LPG-fueled with electronically controlled spark-ignition. The compression ratio is changed to between 10 and 14. The air-fuel ratio is controlled to be lean condition. Engine testing are conducted, looking forward to determining appropriate compression ratio and air-fuel ratio for better engine performance, fuel consumption and exhaust emissions.
The results shows larger brake horsepower is achieved at compression ratio of 11 and 12, while knocking occurs at compression ratio of 14. The higher the compression ratio, the more hydrocarbon emission is found at the engine exhaust. As for the relative air-fuel ratio, higher output torque and horsepower are obtained at l=1.1 among lean air-fuel ratios. The CO and HC emissions are also effectively reduced at this air-fuel ratio.
誌謝..................................................................................................... i
摘要(中)............................................................................................. ii
摘要(英)............................................................................................. iii
目錄.................................................................................................... iv
表索引................................................................................................ v
圖索引................................................................................................ vi
第一章 緒論...................................................................................... 1
第二章 LPG燃料與引擎基本操作參數........................................ 6
2.1 LPG燃料成份及物理化學特性......................................... 6
2.2引擎基本操作參數.............................................................. 9
第三章 實驗設備.............................................................................. 12
3.1實驗設備................................................................................ 12
3.2實驗準備.......................................................................... 21
3.3 實驗測試項目....................................................................... 22
第四章 實驗結果與討論.................................................................. 24
4.1 探討轉速與相對空燃比對引擎之影響............................. 24
4.2 探討負載大小與相對空燃比對引擎之影響.....................30
4.3 探討不同壓縮比與相對空燃比對引擎之影響................ 33
4.4 探討轉速與壓縮比對引擎之影響.............................. .......36
4.5 比較觸媒轉化器及相對空燃比1.1,1.2之影響...............39
4.6 比較觸媒轉化器與相對空燃比對引擎之影響.................41
第五章 結論......................................................................................... 42
參考文獻.............................................................................................. 44
附表...................................................................................................... 46
附圖...................................................................................................... 51
附錄A.................................................................................................... 102
[1]行政院環保署中華民國全球環境變遷資訊系統,http://www.epa.gov.tw/globe/chhome.htm。
[2]馬小康,我國因應「氣候變化綱要公約」之產業永續發展之建議,邁向二十一世紀:環境與能源研討會,八十 七年五月五-六日。
[3] Sho S. Takagaki, and Robert R. Rine, "The Effects of Compression Ratio on Nitric Oxide and Hydrocarbon Emissions from a Spark-Ignition Gas Fuelled Engine," SAE Paper 970506.
[4] Caton, J. A., et al., "Development of a Dedicated LPG-Fueled Spark-Ignition Engine and Vehicle for the 1996 Propane Vehicle Challenge," SAE Paper 972692.
[5] Angelo, T. G., et al., "Emission and Performance of a Small L-Head Utility Engine Fueled with Homogeneous Propane/Air and Propane/Air/Nitrogen Mixture," SAE Paper 932444.
[6] D. J. Luhman,"Emission Control of a Propane Fueled Small Utility Engine Utilizing Air/Fuel Ratio Control and Three-Way Catalyst," SAE Paper 932445.
[7] Nil, "Natural Gas Fueling of Diesel Engines," Automotive Engineering, Nov.1996.
[8] M. L. Willi, and B. G. Richards, "Design and Development of a Direct Injected, Glow Plug Ignition-Assisted, Natural Gas Engine," Journal of Engineering for Gas Turbines and Power, Vol. 117, pp.799-803, Oct. 1995.
[9] Yamada, T., et al., "Universal air-fuel ratio heated exhaust gas oxygen sensor and further applications," SAE Paper 920234.
[10] R. L. Evans, and J. Blaszczyk, "A Comparative Study of the Performance and Exhaust Emissions of a Spark Ignition Engine Fueled by Natural Gas and Gasoline," Proc., Instn. of Mech. Engrs., vol. 211, part D, 1997.
[11] V. K. Duggal, "重型替代燃料引擎之現況與發展",Cummins Engine Company, Inc., 1996.
[12]鄭元良,沈志忠,徐功芳,"液化石油氣引擎稀薄燃燒之廢氣排放",中國機械工程學會第十五屆全國學術研討 會,台南市,國立成功大學,87年12月。
[13] R. L. Evans, "Combustion Chamber Design for a Lean-Burn SI Engine," SAE Paper 921545.
[14] Fuel Systems and Emission Controls, by Chek-Chart Publications, third edition, 1994.
[15] Thomas, A., "Automobile Fuels," in Internal Combustion Engine, edited by Constantine Arcoumanis, Academic Press, 1988.
[16] 環保署網站,http://www.epa.gov.tw/
[17]羅永祥、魏榮昌、蕭有福,"不同成分LPG為車用燃料之引擎性能及排氣污染研究",石油季刊,第十三卷第二 期,民國八十三年。
[18] "物質安全資料表,企安第F003號",中國石油公司,民國八十四年。
[19]戚恩韶,操作參數對LPG燃料引擎性能之影響,碩士論文,國立台灣海洋大學機械與輪機工程學系,中華民國 八十五年六月。
[20]高瑞宏,汽車引擎之空燃比控制,碩士論文,國立台灣海洋大學機械與輪機工程學系,中華民國八十六年六 月。
[21] Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw Hill, 1988.
[22]北村博文編輯,LPG自動車構造取扱基準,日本LPG自動車研究會,平成元年三月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top