(3.237.97.64) 您好!臺灣時間:2021/03/03 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許耿豪
研究生(外文):KenHao Hsu
論文名稱:Xenorhabdusluminescens重組脂肪的基因表現與生化特性
論文名稱(外文):Gene expression and characterization of the recombinant lipase from Xenorhabdus luminescens
指導教授:蕭介夫蕭介夫引用關係
指導教授(外文):JeiFu Shaw
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:水產生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:81
中文關鍵詞:脂肪
外文關鍵詞:lipase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用PCR (Polymerase Chain Reaction)方法取得Xenorhabdus luminescens脂肪基因,長約1.8kb,轉譯出約66kDa之蛋白質。將脂肪基因轉殖至pET20b(+)載體並於E.coli BL21(DE3)宿主中進行表現,在此系統中可大量表現但卻形成包函體(inclusion body),以0.2% SDS溶解包函體可得到有活性的SDS-lipase。另將含有X. luminescens脂肪基因的pG3K質體送入BL21(DE3)宿主可得基礎表現之可溶性lipase。兩者皆以膠體電泳純化法(gel electrophoresis purified)純化。
生化性質分析方面,SDS-lipase與可溶性lipase最適作用pH值為8.0,最適作用溫度為40℃,可溶性lipase可至50℃。可溶性之lipase耐熱性比SDS-lipase高,置於100℃下處理一小時,soluble-lipase仍維持90%以上活性,而SDS-lipase於僅殘餘18%活性。金屬離子Fe2+提高了20%活性,而Co2+、Cu2+及Zn2+抑制了其活性。從基質(三酸甘油酯)特異性實驗中,對於鏈長度與酯鍵位置並無專一性,應屬於非特異性脂肪。SDS-lipase對短鏈酯類(四碳)有較高的kat/Km值,對長鏈酯類(12碳)Km值與soluble-lipase相近,但kcat值卻較低。以三酸甘油酯類為基質,X. luminescens脂肪活性比Candida rugosa脂肪高出9倍,比豬胰臟脂肪高出16倍,是一極具潛力的酵素。進行C端序列剪切實驗,將蛋白質C端剪切掉約一萬分子量時,仍保有活性,但超過則失活。
Xenorhabdu luminescens lipase gene encodes a 66kDa protein. The lipase gene was cloned with PCR (polymerase chain reaction) technique and overexpressed in E. coli BL21(DE3) using the pET20b(+) vector system, but the overexpressed protein formed inclusion body. Dissolving the inclusion body in 0.2% SDS can recover the lipase activity. On the other hand, the X. luminescens lipase gene expressed in BL21(DE3) using pG3K vector had basal expression of soluble lipase. Both enzymes were purified by gel electrophoresis.
The optimum pH of both lipases are pH 8. The optimum temperature for SDS-lipase and soluble lipase were 40℃ and 50℃, respectively. Soluble lipase is more stable than SDS-lipase. After 1 hour incubation in 100℃ water bath, soluble lipase and SDS-lipase retained 90% and 18% activity, respectively. Fe2+ enhanced 20% activity of lipase, but Co2+, Cu2+ and Zn2+ greatly decreased the activity. SDS lipase had higher catalytic efficiency (kcat/Km) toward p-nitrophenyl butyrate. When using p-nitrophenyl caprylate and p-nitrophenyl laurate as substrates, SDS lipase had similar Km but lower kcat than soluble lipase. The enzyme was a non-specific lipase, its activity was higher than Candida rugosa lipase and Porcine pancreatic lipase by 9 and 16 fold, respectively. The enzyme deleted 10 kDa from C terminal still retained lipase activity.
第一章 緒論
一、 脂肪的生化特性 1
二、 脂肪的結構特性 2
1. 一級胺基酸序列 2
2. 三級結構之特性…………………………………………..………2
3. 活化部位之催化三元體…………………………………………..3
4. 含氧陰離子洞 (oxyanion hole)……………………………………4
5. 蓋子 (The lid)……………………………………………………...4
三、 脂肪之催化反應機制 ..5
四、 脂肪的界面活化作用現象 ..5
五、 脂肪的應用性 7
六、 實驗緣起…………………………………………………..10
第二章 材料與方法
一、 材料、儀器與藥品 12
(一) 微生物材料 12
(二) 質體 12
(三) 實驗儀器 13
(四) 實驗藥品 15
二、 X. luminescens脂肪表現載體(expression vector)之構築 16
(一) 表現載體之構築設計 16
(二) 聚合連鎖反應 17
(三) 序列基因剪切 (serious deletion)………………………….....18
(四) 瓊脂醣膠電泳……………………………………….19
(五) DNA之回收…………………………………………19
(六) 限制之剪切作用…………………………………..20
(七) 接合反應……………………………………………..20
(八) E. coli通透性細胞之製備…………………………...20
(九) E. coli轉形作用(transformation)……………………..21
(十) 篩選(screening)……………………………………….21
(十一) 質體DNA 之抽取純化……………………………21
(十二) DNA序列分析……………………………………..23
三、 X. luminescens脂肪表現(expression)系統之建立 23
(一) E. coli培養方法 23
(二) 蛋白質誘發(induction)與樣品處理 23
四、 X. luminescens脂肪之純化 …………24
(一) E. coli之破碎 24
(二) 脂肪之純化 25
五、 X. luminescens脂肪之生化特性分析 26
(一) 電泳分析法 26
(二) 蛋白質濃度測定 29
(三) 脂肪活性測定 .29
(1) 脂肪活性測定…………………………………………....29
(2) SDS耐受性分析……………………………………….…...30
(3) 最適pH值…………………………………………………..30
(4) 最適作用溫度…………………………………………….…31
(5) 脂肪耐熱性分析…………………………...………….….31
(6) 金屬鹽類影響………………………………………….…….31
(7) 脂肪對不同受質練長度之活性分析………………….….32
(8) 脂肪酵素動力學分析………………………………….….32
第三章 結果與討論
一、 E. coli表現系統的選擇 33
二、 X. luminescens脂肪表現載體的構築 33
三、 重組蛋白質的表現 34
四、 重組蛋白質的純化 35
五、 重組蛋白質生化性質的分析 45
(一) 測定脂肪活性之波長選定………………………………...35
(二) 最適反應pH值(optimum pH) 36
(三) 最適反應溫度(optimum temperature)……………………….36
(四) 熱穩定性分析 37
(五) 金屬離子催化反應的影響 37
(六) 脂肪對不同受質鏈長度之活性分析……………………...38
六、 酵素動力學分析………………………………………….38
七、 脂肪活性比較………………………………………….39
八、 脂肪C端的序列剪切…………………………………40
第四章 結論與展望
一、 結論 42
二、 展望與後續實驗 43
參考文獻 44
Akoh, C. C. (1994) Enzymatic synthesis of caetylated glucose fatty acid esters in organic solvent. J. Am. Oil Chem. Soc. 71(3):319-323
Antonian, E. (1988) Recent advences in the purification, characterization and structure determination of lipase. LIPIDS 23(12):1101-1106
Brady, L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J. P., Christiansen, L., Jensen, B. H., Norskov, L., Thim, L. and Menge, U. (1990) A serin protease triad forms the catalytic center of a triacylglycerol lipase. Nature 343(33):747-770
Brookes, I. K., Lilly, M. D. and Drozed, J. W. Use of immobillized Bacillus subtillis for the stereospecfic hydrolysis of d,1-methyl acetate. Enzyme Microb. Technol. 9:217-220
Brockman, H. L., W. E. Momson, and T. Tsujita. 1988. Lipid-lipid complexes: properties and effects on lipase binding to surfaces. JAOCS 65(6):891-896
Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Donson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. H. Jensen, S. A. Patkar, and L. Thim. (1991) A model for interfacial activation in lipase from the structure of a fungal lipase-inhibitor complex. Nature 51(6):491-495
Carriere, K., Thirstrup, K., Boel, E., Verger, R. and Thim, L. (1994) Structure-function relationships in naturally occurring mutants of pancreatic lipase. Protein engineering. 7(4):563-569
Chang, R. C., J. C. Chen, and J. F. Shaw (1996) Site-directed mutagenesis of a novel serine arylesterase from Vibro mimicus identifies residues essential for catalysis. Biochem. Biophy. Res. Comm. 221:477-483
Chang, R. C., J. C. chen and J. F. Shaw (1995) Vibrio mimicus arylesterase has thioesterase and chymotrypsin-like activity. Biochem. Biophy. Res. Comm. 213:475-483
Chapus, C. and M. Semeriva, C. Bovier-Lapierre, and P. Desnuelle. (1976) Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic ipase. Biochemistry 15(23):4980-4987
Chapus, C. and M. Semeriva. (1976) Mechanism of pancreatic lipase action 2. Catalytic properties of modified lipase. Biochemistry 15(23):4988-4991
Chung, G. H., Lee, Y. P., Jeohn, G. H., Yoo, O. J. and Rhee, J. S. (1991) Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agric. Biol. Chem. 55(9):2359-2369
Decker, L. A. (ed.) (1977) Worthington Enzyme manual, pp.127-128. Worthington Biochemical Corporation, Freehold, NJ
Derewenda, Z. S. and U. Derewenda (1991) Relationships among serine hydrolase: evidence for a common structure motif on triaclglyceride lipases, Biochem Cell Biol 69:842-851
Derewenda, Z. S. and U. Derewenda (1993) News from the interface: the molecular structure of triacylglycerude lipase. TIBS 18:20-25
Derewenda, U., A. M. Brzozowski, D. M. Lanson, and Z. S. Derewenda. (1992) Catalysis at the interface: The anatomy of a conformational charge in a triglyceribe lipase. Biochemistry 31:1532-1541
Ergan, F., Trani, M. and Andre, G. (1990) Production of glycerides from glycerol and fatty acid by immobillized lipase in non-aqueous media. Biotechnol. Bioeng. 35:195-200
Garcia, T., Martinez, M. and Aracil, J. (1993)Enzymatic synthesis of an analogue of jojoba oil: Optimization by staistical andlysis. Enzyme Microb. Technol. 15:607-611
Gillies, B., Yamazaki, H. and Armstrong, D. W. (1987) Production of flavor esters by immobillized lipase. Biotechmol. Lett. 9(10):709-714
Gillis, A. (1988) Research descovers new roles for lipase. J. Am. Oil Chem. Soc. 65(6):840-851
Haraldsson, G. G., Hoskuldsson, P. A., Sigurdsson, S. T., Thrsteinsson, F. and Gudbjarnason, S. (1989) The prepaaration of triglycerides highly enriched with ω-3 polyunstaturated fatty acids via lipase catalyzed interesterification. Tatrahedron lett. 30(13):1671-1674
Henderson, R. J., Burkow, I. C. and Millar, R. M. (1993) Hydrolysis of fish oils containing polymers of triacylglycerols by pancreatic lipase in vitro. LIPIDS 28(4):313-319
Hiroaki, I., Nojima, H., and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23-28.
Iwai, M., Okumura, S. and Tsujisaka, Y. (1980) Synthesis of terpene alcohol esters by lipase. Agric. Biol. Chem. 44(11):2731-2731
Jensen, R. G. (1974) Characteristics of the lipase from the mold Geotrichum candidum: A review. Lipids 9:149-157
Kazlauskas. R. J. (1994) Elucidating structure-mechanism relationships in lipase: prospects for predicting and engineering catalytic properties. TIBTECH 12:464-472
Kloosterman, M., Elferink, V. M., van lersel, J., Roskman, J. H., Meijer, E. M. Hulshof, L. A. and Sheldon R. A. (1998) Lipase in the proparatin of β-blockers. TIBTECH 6:251-256
Kugimiya, W., Otani, Y., Hashimoto, Y. and Takagi, Y. (1986) Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem. Biophys. Res. Comm. 141:185-190
Lee,Y. L., Chen, J. C., and shaw, J. F. (1997) The thioesterase I of E. coli is an arylesterase and shows stereospecificity for protease substrates. Biochem. Biophys. Res. Commun. 231:452-456
Linfield, W. M., Barauskas, R. A., Sivieri, L., Serota, S. and Stevenson, R. W., Sr. (1984) Enzymatic fat hydrolysis and synthesis. JAOCS 61:191-195
Liao, D. I., Breddam, K., Sweet, R. M., Bullock, T. and Remington, S. J. (1992) Refined atomic model of wheat serine carboxypetidase II at 2.2-A resolution. Biochemistry 31:9796-9812
Macrae, S. R. (1983) Lipsdr-vstslyzed interesterication of oils and fats J. Am. Oil Chem. Soc. 60:243-246
Carinato, M. E., P. C., Yang, X., Knox, T. M., Conlin, C. A., and Miller, C. G. (1998) Yhe apeE gene of Salmonella typhimrium encodes an outer membrane esterase not present in E. coli. J. Bacteriol. 180(14):3517-3521
Martinez, C., Geus, P. D., Lauwereys, W., Mathyssens, G. and Mathyssens, G. and Cambillau, C. (1992) Fusarium solani cutinase in a lipoytic enzyme with a catalytic serine accessible to solvent. Nature. 365:615-618
Miller, C., H. Ausrin, L. Posorske, and J. Gonzlez. (1988) Characteristics of an immobilized lipase for the commercial systhesis of esters. JAOCS 65(6):927-931
Misset, O. (1994) The structure-function relationship of the lipase from Pseudomonas aerugosa and Bacillus subtilis. Prot. End. 7:523-529
Musayev, F. N., Y. L. Lee, J. F. Shaw and Y. C. Liaw. (1995) Crystallization and preliminary X-ray analysis of arylesterase from Vibrio mimicus. Protein Science 4:1931-1933
Mukherjee, K. D. and Kiewitt, I. (1998) Preparation of esters resembling nature waxes by lipase-catalyzed reations. J. Agric. Food Chem. 36:1333-1336
Noble, M. E. W., A. Cleasby, L. N. Johnson, M. R. Egmond, and L. G. J. Frenken. (1993) The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveal a partially redundant catalytic aspartate. FEBS 331(1,2):123-128
Okumara, S., M. Iwai, Y. Tominaga. (1984) Synthesis of ester oligomer by Aspergillius niger lipase. Agric. Biol. Chem. 48(1):2805-2808
Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. J. L., Verschueren, K. H. C. and Goldman, A. (1992) The α/β hydrolase fold. Protein Engeineering. 5(3): 197-211
Pathak, D., Ngai, K. L., and ollis, D. (1998) J. Mol. Biol. 204:435-445
Polgar, L. (1992) Structure relationship between lipase and peptedase of the prolyl oligoprprtidase family. FEBS 311(3):281-284
Rubin, B. (1994) Grease pit chemistry exposed. Structural biology. 1(9):568-572
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) in Molecular cloning. A laboratory manul. Cold Spring Harbor Laboratory Press, New York.
Sarda, L. and Desnuelle, P. (1958) Bischem. Biophys. Acta. 30:513-521
Schrag, J. D., Y. Li, S. Wu and M. Cygler (1991) Ser-His-Glu triad forms the catalytic site of lipase from Geotrichum candudum, Nature 351(27):71-764
Sekar, V. (1987) A rapid screening procedure for the identification of recombinant bacterial clones. Bio-Techeniq. 5(1):11-13.
Shaw, J. F. and Lo, S. (1994) Production of propylene glycol fatty acid monoesters by lipase-catalyzed reactions in organic solvents. J. Am. Oil Chem. Soc. 71(7):715-719
Shaw, J. F., Wang, D. L. and Wang, Y. T. (1991) Lipase-catalysed ethanolysis and isopropanolysis of triglycerider with long-chain fatty acid. Enzyme Microb. Technol.13:544-546
Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. (1991) Science 253:872-879
Uppenberg, J., Hansen, M. T., Patkar, S. and Jones, T. A. (1994) Sturcture 2:293-308
Vadehra, D. V. (1974) Staphylococcus lipase. Lipids 9:158-165
Van Tilbeurgh, H. Egloff, M. P., Martinez. C., Rugani, N., Verger, R. and Cambillau, C. (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. 362(29):814-820
Van Tilbeurgh, H., Sarda, L., Verger, R. and cambillau, C. (1992) Structure of the pancreatic lipase-pocolipase complex. Nature 359:159-162
Wang, H. and Dowds, B. C. A. (1993) Phase Variation in Xenorhabdus luminescens: Cloning and sequencing of lipase gene and analysis of its expression in primary and secondary phase of the bacterium. J. Bacteriol. 175(6):1655-1673
Winkler, F. K., D''Arcy, A. and Hunziker, W. (1990) Structure of human pancreatic lipase. Nature 343:771-774
Yadwad, V. B., Ward, O. P. and Noronha, L. C. (1991) Application of lipase to concentrate the Docosahexaenoic acid (DHA) fraction of fish oil. Biotechnology and Bioengineering. 38:956-959
Yamane, T., Hoq, M. M. Itoh, S. and shimizu, S. (1986) Glycerolysis of fat by lipase. J. Am. Oil chem. Soc. 35(8):625-631
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔