(3.239.33.139) 您好!臺灣時間:2021/03/02 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝明宏
研究生(外文):MingHung Hsieh
論文名稱:自充填混凝土之本土化研究
指導教授:詹穎雯詹穎雯引用關係
指導教授(外文):YinWen Chan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:169
中文關鍵詞:自充填混凝土
外文關鍵詞:Self-Compacting Concrete
相關次數:
  • 被引用被引用:55
  • 點閱點閱:329
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新頒行的結構物耐震設計,模內之鋼筋密佈,澆置擣實不易,再加上工地於施工時噪音防制之環保需求,為達成施工省力化及自動化之目標,使得強調免擣實及自己填充特性的自充填混凝土(Self-Compacting Concrete,簡稱SCC)之市場需求大為增加。使用自充填混凝土可使混凝土的施工能自動澆置,並因具高度流動力,且流動時不會骨材析離,可使混凝土流通狹窄鋼筋間距完全充填至模版各角落,因混凝土良好而確實的填充,可提高結構物之耐久性及強度,確保構造物之品質及可靠度。這對於澆置條件不良或技術困難之工程問題可有效解決,對未來營造業之影響及衝擊將是相當深遠。
本研究參考日本預拌混凝土工會所出版之「自己充填混凝土製造手冊」及土木學會所出版之「高流動性混凝土施工指針」,設計出修正之簡易自充填混凝土配比設計的方法,然後根據此修正之配比設計方法設計出自充填混凝土的配比,並使用國內的材料,研究自充填混凝土在新拌階段時的流動性、材料分離抵抗性、間隙通過性及充填性等,同時研究實驗室配比與廠拌配比之差異,及其調整之過程及重點。自充填混凝土為了提高流動性,所以通常具有高漿量、使用卜作嵐材料及添加強塑劑等特點,但就混凝土材料的體積穩定性而言將會有負面的效果,因此本文以廠拌調整後之自充填混凝土配比,進行自充填混凝土體積穩定性的研究,研究的項目包括自體收縮、乾燥收縮、基本潛變及乾燥潛變等。
第一章 緒論………………………………………………………………… 1
1.1.研究動機與目的…………………………………………………… 1
1.2.研究範圍…………………………………………………………… 2
第二章 自充填混凝土-定義、材料與測試……………………………… 5
2.1.自充填混凝土的由來……………………………………………… 5
2.2.自充填混凝土名詞釋疑…………………………………………… 6
2.3.為什麼要使用自充填混凝土……………………………………… 9
2.4.自充填混凝土配比設計法…………………………………………10
2.4.1.岡村甫自充填混凝土配比設計法……………………………10
2.4.2.日本預拌混凝土工會自充填混凝土配比設計法……………16
2.5.自充填混凝土流動性測試方法……………………………………18
2.5.1.坍流度試驗方法………………………………………………19
2.5.2. V漏斗流下試驗方法…………………………………………20
2.5.3.使用填充裝置的間隙通過性試驗方法(Box-test)………21
2.5.4.現場全量試驗(Acceptance Test at Jobsite)…………22
第三章 文獻回顧……………………………………………………………25
3.1.自充填混凝土材料之特性與要求…………………………………25
3.1.1.水泥……………………………………………………………25
3.1.2.卜作嵐材料……………………………………………………26
3.1.3.粗骨材…………………………………………………………31
3.1.4.細骨材…………………………………………………………31
3.1.5.化學摻料………………………………………………………32
3.2.影響自充填混凝土充填性能之因素………………………………36
3.2.1.鋼筋淨間距與最大粗骨材粒徑之比例………………………36
3.2.2.粗骨材含量……………………………………………………36
3.2.3.流動性及抗析離性……………………………………………37
3.3.混凝土的收縮變形…………………………………………………37
3.4.混凝土的潛變變形…………………………………………………40
3.5.混凝土的乾縮、潛變、彈性模數及抗壓強度預測公式…………43
3.5.1. BP-KX乾縮潛變預測模式……………………………………44
3.5.2.抗壓強度預測公式……………………………………………46
第四章 實驗計畫……………………………………………………………49
4.1.實驗材料……………………………………………………………50
4.2.主要實驗儀器及設備………………………………………………51
4.3.試體製作……………………………………………………………53
4.4.試驗項目變數與內容………………………………………………55
4.4.1.體積穩定性試驗………………………………………………55
4.4.2.抗壓強度實驗及彈性模數試驗………………………………58
4.4.3.自充填混凝土的均勻性試驗…………………………………60
第五章 實驗結果與討論……………………………………………………63
5.1.修正之簡易自充填混凝土配比設計法……………………………63
5.2.配比試拌及調整過程………………………………………………69
5.2.1.實驗室之試拌及調整…………………………………………69
5.2.2.配比廠拌之調整………………………………………………70
5.3.實尺寸SCC樑均勻性試驗………………………………………… 73
5.3.1.混凝土運送期間流變性質之變化……………………………74
5.3.2. SCC樑之施工情形……………………………………………75
5.3.3. SCC樑之破壞性檢測…………………………………………77
5.3.4. SCC樑之非破壞性檢測………………………………………78
5.4.自充填混凝土之體積穩定性………………………………………79
5.4.1.自充填混凝土的自體收縮……………………………………79
5.4.2.自充填混凝土的乾燥收縮……………………………………81
5.4.3.自充填混凝土的基本潛變……………………………………82
5.4.4.自充填混凝土的乾燥潛變……………………………………84
5.5. BP-KX model乾縮潛變預測結果之討論…………………………85
5.5.1. 自充填混凝土基本潛變及乾燥潛變與BP-KX model之比較85
5.5.2. 自充填混凝土乾燥收縮與BP-KX model之比較……………85
第六章 結論與建議…………………………………………………………87
6.1.結論…………………………………………………………………87
6.2.建議…………………………………………………………………89
參考文獻…………………………………………………………………… 92
1. 周禮良,「日本自己充填混凝土之應用現況」,高性能混凝土新近發展與應用,pp.19-36,Taipei,April 1997。
2. 陳振川,「國科會高性能混凝土群體研發現況」,高性能研發及推廣研討會論文集,pp.1-21,Taipei,June 1997。
3. Okamura, H., “Self-Compacting High Performance Concrete,” ACI Concrete International, pp. 50-54, July 1997.
4. 沈進發,「高性能混凝土施工規範探討」,高性能混凝土研討會,pp.193-201,Taipei,December 1993。
5. Henry, G. Russell, “ACI Defines High-Performance Concrete,” Concrete International, Vol. 21, No. 2,pp. 56-57, February 1999.
6. 蘇南,「二十一世紀TAICON(台灣混凝土)之配比設計」,高性能混凝土配比設計實作,台灣營建研究院,pp.45-81,Taipei,July 1998。
7. 詹穎雯、廖基良、謝明宏,「自充填混凝土之化學摻料種類與用量之設計方法」,混凝土施工自動化-化學摻料、配比、品管與施工研討,台灣營建研究院,pp.85-96,Taipei,November 1998。
8. 岡村甫,前川宏一,小澤一雅, “High-performance concrete”, 技報堂出版。
9. Pierre-Claude Aitcin,“Cement/Superplasticizer Compatibility” , Seminar on High-Performance Concrete, Taipei, April 1997.
10. 日本預拌混凝土工會,「自己充填混凝土製造手冊」。
11. 土木學會,「高流動性混凝土施工指針」,July 1998。
12. 牧保峰,「高流動性混凝土流動性檢測規範-日本現行規範與探討」,混凝土施工自動化-化學摻料、配比、品管與施工研討, pp.125-149,Taipei,November 1998。
13. Ouchi, M. , Ozawa, K. & Okamura, H., “Development of a simple self-compactability testing method for acceptance at jobsite,” Proceedings of Cairo First Conference on Concrete Structures, pp.9-11-9.20, Cairo, (1996)
14. Ouchi,M.,“Mix-Design And Testing Methods for Self-Compacting Concrete,混凝土施工自動化-化學摻料、配比、品管與施工研討,pp.9-16,Taipei,November 1998.
15. 陳振川,「自充填混凝土施工-世界第一大之地上LNG貯存槽」,混凝土施工自動化-化學摻料、配比、品管與施工研討, pp.189-206,Taipei,November 1998。
16. 沈進發,「混凝土品質控制、管理、材料、施工、試驗」,台北(1988)。
17. Okamura, H., Maekawa k., and Ozawa, K.,“High Performance Concrete,” Gihoudou Pub.,Tokyo, p.323, 1993.
18. 林豐益,「高性能混凝土配比及性能之探討」,碩士論文,台灣工業技術學院,1994。
19. 詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文,國立台灣大學土木工程研究所,民國77年6月。
20. 陳振川,「飛灰及爐石混凝土性質與其工程應用」,結構工程,第二卷,第四期,pp.87-94,民國76年10月。
21. Mehta, P.K. and P.J.M. Monteiro , “Concrete Structure, Properties,and Materials,” Prentice-Hill, Inc.(1993).
22. 陳清泉、陳振川,「爐石為水泥熟料與添加料對混凝土特性影響之文獻及國外現況調查研究」,台灣營建研究中心報告,1987。
23. 松下博通,「高爐水泥混凝土之性質」,高爐水泥混凝土之應用,中華民國八十二年混凝土技術研討會,pp.43-58,Taipei,3.10 1993。
24. Helmuth, R.A., “Water-Reducing Properties of Fly Ash in Cement Pastes, Motars, and Concretes:Causes and Test Methods,” ACI SP-91, Vol.1, pp. 723-740, 1986.
25. Berry, E.E. and V.M. Malhotra, “Fly Ash for Use in Concrete —A Critical Review,” ACI Journal, March-April, paper 77-8, pp. 59-73, 1980.
26. 林草英、黃兆龍、洪賢信,「飛灰部分取代混凝土之細骨材之可行性研究」,台灣電力公司綜合研究所,1987。
27. Samarin, A., et al., “The Use of Fly Ash in Concrete —Australian Experience,” ACI SP-79, pp. 143-172, 1983.
28. Cook, J.E., “Fly Ash in Concrete —Technical Considerations,” Concrete International:Design & Construction, Vol. 5, No. 9, pp. 51-59, 1983.
29. Pitt, J.M. and T. Demirel, “High Substitution of Iowa Fly Ash in Portland Cement Concrete,” Civil Engineering Department and Engineering Research Institute, Iowa State University, pp. 5-8, 1983.
30. 苗伯霖,「高性能混凝土配比、施工及品檢應注意問題」,高性能混凝土研討會論文集,台灣營建研究中心,pp.1-34,台北,民國85年4月。
31. 湯維堯,「高強度混凝土水中磨耗性質與早期收縮行為之研究」,碩士論文,國立台灣大學土木工程研究所,民國87年6月。
32. Minoshita, M., T. Suzuki, T. Yonezawa, and K. Mitsui, “Properties of an Acrylic Graft Copolymer-based New Superplasticizer for Ultra High-strength Concrete,” ACI SP-119, pp. 281-299, 1989.
33. 盧玉山,「混凝土收縮行為與材料參數影響之探討」,碩士論文,國立台灣大學土木工程研究所,民國86年6月。
34. Miyahe, N., Ando, T., and Sakai, E., “Superplasticizered Concrete Using Refined Lignosulfonate and its Action Mechanism,” Cement and Concrete Research, Vol.15, No.2, pp.295-302, 1985.
35. Kreijger, P. C., “Plasticizers and Dispersing Admixtures,” Admixtures, CI-80, pp.1-16, The Construction Press, England, 1985.
36. 蘇南,「由國內高性能混凝土配比探討其工程性質」,高性能混凝土研討會論文集,台灣營建研究中心,pp.55-92,台北,民國85年4月。
37. 立石彬,高流動混凝土研討會講習資料,1998年4月3日。
38. Okamura, H. and K. Ozawa, “Mix Design for Self-Compacting Concrete,” Concrete Library of JSCE, No. 25, June 1995.
39. 柴希文,「自充填混凝土之鋼筋間隙通過性與抗析離」,混凝土施工自動化-化學摻料、配比、品管與施工研討,台灣營建研究院,pp.151-173,Taipei,November 1998。
40. Nanayakkra, A., Ozawa, K., and Maekawa, K., “Flow and segregation of fresh Concrete in tapered pipes,” Proc. of 3rd international symposium on liquid-solid flows, ASME, FED-75, 1995.11.
41. Nagamoto, N. and K. Ozawa, “Mixture Proportions of Self-Compacting Concrete,” High Performance Concrete: Design and Materials and Advances in Concrete Technology, ACI SP-172, pp. 623-636, 1997.
42. Ozawa, K. Maekawa, K. and Okamura, H., “Deveiopment of High Performance Concrete,” Journal of the Faculty of Engineering, University of Tokyo, Vol. XII, NO. 3, 1992.
43. Young, J.F. and S. Mindess, “Concrete,” Prentice-Hall, New Jersey, pp. 481-485, (1983).
44. 劉家佑,「高性能混凝土自體收縮性質之研究」,碩士論文,國立台灣大學土木工程研究所,民國85年6月。
45. 駱國富,「高性能混凝土預力樑預力損失與長期變位之研究」,碩士論文,國立台灣大學土木工程研究所,民國85年6月。
46. Bazant, Z.P. and J.C. Chern, “Concrete Creep at Variable Humudity:Constitutive Law Mechanism,” Material and Structures (RILEM), Vol. 18, No. 103, pp. 1-20, Jan-Feb, (1985).
47. Bazant, Z.P. and Kim, J. K., “Improve Prediction Model for Time Dependent Deformations of Concrete:Part I-Shrinkage,” Materials and Structures (RILEM), Vol. 34, pp. 409-421, 1991.
48. Bazant, Z.P. and Kim, J. K., “Improve Prediction Model for Time Dependent Deformations of Concrete:Part II-Basic Creep,” Materials and Structures (RILEM), Vol. 34, pp. 409-421, 1991.
49. ACI Committee 209, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” ACI, Detroit, pp. 98, Oct 1978.
50. CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-International du Beton, Paris, Vol. 2,Appendix e. 1978.
51. 詹穎雯、陳鴻文、周浩生、譚業成、李志信,「高速公路王田交流道工程-混凝土材料潛變與乾縮性質研究報告」,財團法人台灣營建研究院,May 1998。
52. 中國土木工程水利學會,「混凝土工程施工須知」。
53. 黃兆龍,「優生混凝土配比設計法」,高性能混凝土配比設計實作,台灣營建研究院,pp.135-168,Taipei,July 1998。
54. Hsi-Wen Chai, “Design and testing of self-compacting Concrete,” Department of Civil and Environmental Engineering, University of London, April 1998.
55. Kumar, M.P. and J.M. Paulo, Monteiro, “Concrete,” Second Edition, 1993.
56. 黃忠良,「衝擊工學-材料破壞與機械加工理論研討與技術實務」,復漢出版社。
57. Brooks, J.J., “Elasticity,Creep and Shrinkage of Concrete Containing Special Ingredients:Admixture,Slag,Fly Ash and Silica Fume,” ACI Report Committee 209, (1995).
58. 李劍鋒,「高性能混凝土乾縮與潛變性質之研究」,碩士論文,國立台灣大學土木工程研究所,民國83年6月。
59. Miao, B. et al., “Drying Shrinkage of Ready Mixed High Performance Concrete,” ACI Material Journal, Vol.91, No.3,May-June, (1994).
60. Oh, B.H. and Cha, S.W., “Effects of Reinforcement and Humidity on The Creep and Shrinkage Behavior of High Strength Concrete,” Proc. of the 5th International RILEM Symposium on Creep and Shrinkage of Concrete (ConCreep5) , Barcelona, Spain, pp.505-510, (1993).
61. Therese M.C., “Proportioning High-Strength Control P Creep and Shrinkage,” ACI Material Journal, Vol.86, No.6, pp.576-580, (1994).
62. Giaccio, G., Giovambttista, A., Rocco, C.and Zerbino, R., “Compressive Creep of High Performance Concrete,” Proc. of the 5th International RILEM Symposium on Creep and Shrinkage of Concrete (ConCreep5), Barcelona, Spain, pp.511-516, (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔