|
[1] Badon-Gyben, W., Nota in verband met de voorgenomen putboring nabij Amsterdam, Tijdschr. Kon. Inst. Ing. 8-22, 1888. [2] Bakr, A. A., L. W. Gelhar, A. L. Gutjahr, and J. R. McMillan, Stochastic analysis of spatial variability in subsurface flow, 1, Comparison of one — and three-dimensional flow, Water Resour. Res., 14(2), pp. 263-272, 1978. [3] Bear, J., Hydraulics of Groundwater, McGraw-Hill International Book Company, 1979. [4] Bear, J., G. Dagan, Some exact solution of interface problem by means of the hydrograph method, J. Geophvs. Res., 69(8), pp. 1563-1572, 1964. [5] Bear, J., G. Dagan, Solving the problem of local interface upconing in a coastal aquifer by the method of small perturbations, J. Hydro. Res., 6(1), pp. 15-43, 1968. [6] Bennett, Electric-Analog studies of brine coning beneath freshwater wells in the punjab region, West Pakistan, U. S. Geological Survey Water Supply Paper, 1608-J, 1968. [7] Chandler, R. L. and D. B. Mcwhorten, Upconing of the seawater-freshwater interface beneath a pumping well, Ground Water, 13(4), pp. 354-359, 1975. [8] Dagan, G. Amethod of determining the permeability and effective porosity of unconfined anisotropic aquifers, Water Resour. Res., 3(4), pp. 1059-1071, 1967. [9] Diersch, H. J., D. Prochnow, and H. Thiele, Finite elementanalysis of dispersion affected saltwater upconing below a pumping well, Appl. Math. Modeling, 8, pp. 305-312,1984. [10] Frind, E. O., Seawater intrusion in continuous coastal aquifer-aquitard systems, Adv. Water Resour., 5, pp.89-87, 1982a. [11] Frind, E. O., Simulation of long-term transient density-dependent transport in groundwater, Adv. Water Resour., 5, pp.73-88, 1982b. [12] Gelhar, L. W., Stochastic analysis of phreatic aquifers, Water Resour. Res., 10(3), pp. 539-545, 1974. [13] Gelhar, L. W., P. Y. Ko, H. H. Kwai, and J. L. Wilson, Stochastic modeling of groundwater systems, Parsons Laboratory Report 189, Massachusetts Instittue of Technology, Cambridge, 1974. [14] Gutjahr, a. L., and L. W. Gelhar, Stochastic models of subsurface flowL infinte versus finite domain and stationary, Water Resour. Res. 17(2), pp. 337-350, 1981. [15] Haubold, R. G., Approximation for steady interface beneath a well pumping fresh water overlying salt water, Ground Water, 13(3), pp. 254-259, 1975. [16] Henry, H. R., Effects of dispersion on salt encroachment in coastal aquifers, Sea Water in Coastal Aquifer, U.S. Geo. Surv. Water Supply, pp. 1613-C, 1964. [17] Herzberg, A., Die Wasserversorgung Einger Nor-dseebaden, Z. Gasbeleucht. Wasserversorg., 44, pp. 815-819, pp. 824-844, 1901. [18] Huyakorn, P. S., and C. Taylor, Finite element models for coupled groundwater and convevtion dispersion, Proceedings of the 1st International Conference on Finite Elements in Water Resources, pp. 1.131-1.151, Pentech Press, London, 1976. [19] Huyakorn, P. S., P. F. Anderson, J. W. Mercer, and H. O. White, Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model, Water Resour. Res., 23(2), pp. 293-312, 1987. [20] Kemblowski, M., Saltwater-freshwater transient upconing — an implicit boundary element solution, J. Hydro., 78, pp. 35-47, 1985. [21] Lee, C. H., and R. T. Cheng, On seawater encroachment in coastal aquifers, Water Resour. Res., 10(5), pp. 1039-1043, 1974. [22] McLaughlin, D., and E. F. Wood, A distributed parameter approach for evaluating the accuracy of groundwater model predictions, 1, Mathematical development, Water Resour, Res., 24(7), pp. 1037-1047, 1988. Mizell, S. A., A. L. Gutjahr, and L. W. Gelhar, Stochastic analysis of spatial variability in two-dimensional steady groundwater flow assuming stationary and nonstationary head, Water Resour. Res., 18(4), pp. 1053-1067, 1982. [23] Muskat, M., The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, Ann Arbor, 1937. [24] Muskat, M. and R. D. Wyckoff, An approximate theory of water-coning in oil production, Trans. Am. Inst. Min. Metall. Pet. Eng., 114, pp. 144-163, 1935. [25] Ogata, A. and R. B. Banks, A solution of the differential equation of longitudinal dispersion in porous media, USGS Professional Paper 411-a:al-A7, 1961. [26] Pinder, G. F. and H. H. JR. Cooper, A numerical technique for calculating the transient position of the saltwater front, Water Resour. Res., (3), pp. 875-882, 1970. [27] Reilly, T. E. and A. S. Goodman, Quantitative analysis of saltwater-freshwater relationships in groundwater systems — a historical perspective, J. Hydro. 80, pp. 125-160, 1985. [28] Reilly, T. E. and A. S. Goodman, Analysis of steady state saltwater upcoing with application at Truro well field, Cpae Cod, Massachusetts, Ground Water, 25(2), pp. 194-206, 1987a [29] Reilly, T. E. and A. S. Goodman, Analysis of saltwater upconing beneath a pumping well, J. Hydro., 89, pp. 169-204, 1987b. [30] Rubin, H, and G. F. Pinder, Approximate analysis of upconing, Adv. Water Resour, 1(2), pp. 97-101, 1977. [31] Rubin, Y., and G. Dagan, Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifer, 2, Impervious boundary, Water Resour. Res., 25(4), pp. 707-712, 1989. [32] Rumer, R. R. and D. R. F. Haleman, Intruded salt water wedge in porous media, Proc. ASCE, 89(6), pp. 193-220, 1963. [33] Sagar, B., Galerkin finite element procedure for analyzing flow through random media, Water Resour. Res., 14(6), pp. 1035-1044, 1978. [34] Sahni, B. M., Salt water coning beneath fresh water wells, Colorado State University, Fort Collins, Coio., Water Management Tech. Rep. No.18, 168, pp.1972. [35] Segol, G., G. F. Pinder, and W. G. Gray, A Galerkin finite element technique for calculating the transient position of the saltwater front, Water Resour. Res., 11(2), pp. 343-347, 1975. [36] Serrano, S. E., and T. E. Unny, Semigroup solution to stochastic unsteady groundwater flow subject to random parameters, Stochasitic hydrol. Hydraul.., 1(4), pp. 281-296, 1987. [37] Serrano, S. E., Analysis solution of the nonlinear groundwater flow equation in unconfined aquifers and the effect of the hetterrogeneity, Water Resour. Res., 31(11), pp. 2733-2742, 1995. [38] Serrano, S. E., The Theis solution in heterogeneous aquifers, Gruond Water, 35(31), pp. 463-467, 1997. [39] Shamir, U. and G. Dagan, Motion of the seawater interface in coastal aquifers: A Numerical Solution, Water Resour. Res. 7(3), pp. 644-657, 1971. [40] Wirojanagud, J. and R. J. Charbenean, Saltwater upconing in unconfined aquifers, ASCE, 111(3), pp. 417-434, 1985.
|