(3.235.108.188) 您好!臺灣時間:2021/03/07 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳谷榕
論文名稱:具密度變化地下水之海水入侵研究
指導教授:林國峰林國峰引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:地下水密度變化海水入侵序率解構法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以往文獻上討論海水入侵問題的方法可以分為兩種,一種是假設海水與淡水為兩種彼此不相互溶的液體,所以海水與淡水將形成一明顯交界面。另一種是將鹽分視為在密度變化地下水流中傳輸之溶質,因此海水中的鹽分會因延散作用而與淡水形成一漸變區。
本文採用後者觀點並引用解構法求解海水入侵問題。於研究過程中解構法具有可以保留非線性項的特性,且比微擾法所得到的解更迅速逼近真解之優點,因此本研究首次引用解構法於海水入侵問題,並保留上述優點進行研究。
首先推導地下水流方程式與擴散方程式之積分解,進而建立海水入侵至地下含水層之數值模式,並分析流通係數與擴散係數對海水入侵鹽分濃度分佈的影響。模擬結果顯示由於流通係數本身含有相當大的不確定性,在參數決定之過程中不論對流通係數高估或是低估,都會對模擬結果有很大的影響。

第一章 緒論1
1-1 研究動機2
1-2 研究目的3
1-3 研究內容4
第二章 文獻回顧6
2-1 採用「明顯交界面」假設下之理論分析7
2-2 採用「明顯交界面」假設下之解析解與數值解8
2-3 考慮地下水流密度變化之理論分析、解析解與數值解10
第三章 定率分析12
3-1 控制方程式13
3-2 理論推導15
第四章 定率模式驗證與數值計算分析21
4-1 模式驗證22
4-2 不同模擬時間下之鹽分濃度分佈(Case 1)23
4-3 擴散係數對鹽分濃度分佈之影響(Case 2)25
4-4 流通係數對鹽分濃度分佈之影響(Case 3)26
第五章 序率分析28
5-1 控制方程式29
5-2 序率地下水流方程式推導31
5-3 達西定律序率分析34
5-4 序率擴散方程式推導37
5-5 流通係數變異數-鹽分濃度變異數之關係式推導44
第六章 序率計算結果與分析47
6-1 時間對鹽分濃度變異數之影響(Case 4)48
6-2 鹽分濃度變異數在空間之分佈(Case 5)49
6-3 流通係數變異數與鹽分濃度變異數之關係(Case 6)50
第七章 結論與建議52
參考文獻54

[1] Badon-Gyben, W., Nota in verband met de voorgenomen putboring nabij Amsterdam, Tijdschr. Kon. Inst. Ing. 8-22, 1888.
[2] Bakr, A. A., L. W. Gelhar, A. L. Gutjahr, and J. R. McMillan, Stochastic analysis of spatial variability in subsurface flow, 1, Comparison of one — and three-dimensional flow, Water Resour. Res., 14(2), pp. 263-272, 1978.
[3] Bear, J., Hydraulics of Groundwater, McGraw-Hill International Book Company, 1979.
[4] Bear, J., G. Dagan, Some exact solution of interface problem by means of the hydrograph method, J. Geophvs. Res., 69(8), pp. 1563-1572, 1964.
[5] Bear, J., G. Dagan, Solving the problem of local interface upconing in a coastal aquifer by the method of small perturbations, J. Hydro. Res., 6(1), pp. 15-43, 1968.
[6] Bennett, Electric-Analog studies of brine coning beneath freshwater wells in the punjab region, West Pakistan, U. S. Geological Survey Water Supply Paper, 1608-J, 1968.
[7] Chandler, R. L. and D. B. Mcwhorten, Upconing of the seawater-freshwater interface beneath a pumping well, Ground Water, 13(4), pp. 354-359, 1975.
[8] Dagan, G. Amethod of determining the permeability and effective porosity of unconfined anisotropic aquifers, Water Resour. Res., 3(4), pp. 1059-1071, 1967.
[9] Diersch, H. J., D. Prochnow, and H. Thiele, Finite elementanalysis of dispersion affected saltwater upconing below a pumping well, Appl. Math. Modeling, 8, pp. 305-312,1984.
[10] Frind, E. O., Seawater intrusion in continuous coastal aquifer-aquitard systems, Adv. Water Resour., 5, pp.89-87, 1982a.
[11] Frind, E. O., Simulation of long-term transient density-dependent transport in groundwater, Adv. Water Resour., 5, pp.73-88, 1982b.
[12] Gelhar, L. W., Stochastic analysis of phreatic aquifers, Water Resour. Res., 10(3), pp. 539-545, 1974.
[13] Gelhar, L. W., P. Y. Ko, H. H. Kwai, and J. L. Wilson, Stochastic modeling of groundwater systems, Parsons Laboratory Report 189, Massachusetts Instittue of Technology, Cambridge, 1974.
[14] Gutjahr, a. L., and L. W. Gelhar, Stochastic models of subsurface flowL infinte versus finite domain and stationary, Water Resour. Res. 17(2), pp. 337-350, 1981.
[15] Haubold, R. G., Approximation for steady interface beneath a well pumping fresh water overlying salt water, Ground Water, 13(3), pp. 254-259, 1975.
[16] Henry, H. R., Effects of dispersion on salt encroachment in coastal aquifers, Sea Water in Coastal Aquifer, U.S. Geo. Surv. Water Supply, pp. 1613-C, 1964.
[17] Herzberg, A., Die Wasserversorgung Einger Nor-dseebaden, Z. Gasbeleucht. Wasserversorg., 44, pp. 815-819, pp. 824-844, 1901.
[18] Huyakorn, P. S., and C. Taylor, Finite element models for coupled groundwater and convevtion dispersion, Proceedings of the 1st International Conference on Finite Elements in Water Resources, pp. 1.131-1.151, Pentech Press, London, 1976.
[19] Huyakorn, P. S., P. F. Anderson, J. W. Mercer, and H. O. White, Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model, Water Resour. Res., 23(2), pp. 293-312, 1987.
[20] Kemblowski, M., Saltwater-freshwater transient upconing — an implicit boundary element solution, J. Hydro., 78, pp. 35-47, 1985.
[21] Lee, C. H., and R. T. Cheng, On seawater encroachment in coastal aquifers, Water Resour. Res., 10(5), pp. 1039-1043, 1974.
[22] McLaughlin, D., and E. F. Wood, A distributed parameter approach for evaluating the accuracy of groundwater model predictions, 1, Mathematical development, Water Resour, Res., 24(7), pp. 1037-1047, 1988. Mizell, S. A., A. L. Gutjahr, and L. W. Gelhar, Stochastic analysis of spatial variability in two-dimensional steady groundwater flow assuming stationary and nonstationary head, Water Resour. Res., 18(4), pp. 1053-1067, 1982.
[23] Muskat, M., The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, Ann Arbor, 1937.
[24] Muskat, M. and R. D. Wyckoff, An approximate theory of water-coning in oil production, Trans. Am. Inst. Min. Metall. Pet. Eng., 114, pp. 144-163, 1935.
[25] Ogata, A. and R. B. Banks, A solution of the differential equation of longitudinal dispersion in porous media, USGS Professional Paper 411-a:al-A7, 1961.
[26] Pinder, G. F. and H. H. JR. Cooper, A numerical technique for calculating the transient position of the saltwater front, Water Resour. Res., (3), pp. 875-882, 1970.
[27] Reilly, T. E. and A. S. Goodman, Quantitative analysis of saltwater-freshwater relationships in groundwater systems — a historical perspective, J. Hydro. 80, pp. 125-160, 1985.
[28] Reilly, T. E. and A. S. Goodman, Analysis of steady state saltwater upcoing with application at Truro well field, Cpae Cod, Massachusetts, Ground Water, 25(2), pp. 194-206, 1987a
[29] Reilly, T. E. and A. S. Goodman, Analysis of saltwater upconing beneath a pumping well, J. Hydro., 89, pp. 169-204, 1987b.
[30] Rubin, H, and G. F. Pinder, Approximate analysis of upconing, Adv. Water Resour, 1(2), pp. 97-101, 1977.
[31] Rubin, Y., and G. Dagan, Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifer, 2, Impervious boundary, Water Resour. Res., 25(4), pp. 707-712, 1989.
[32] Rumer, R. R. and D. R. F. Haleman, Intruded salt water wedge in porous media, Proc. ASCE, 89(6), pp. 193-220, 1963.
[33] Sagar, B., Galerkin finite element procedure for analyzing flow through random media, Water Resour. Res., 14(6), pp. 1035-1044, 1978.
[34] Sahni, B. M., Salt water coning beneath fresh water wells, Colorado State University, Fort Collins, Coio., Water Management Tech. Rep. No.18, 168, pp.1972.
[35] Segol, G., G. F. Pinder, and W. G. Gray, A Galerkin finite element technique for calculating the transient position of the saltwater front, Water Resour. Res., 11(2), pp. 343-347, 1975.
[36] Serrano, S. E., and T. E. Unny, Semigroup solution to stochastic unsteady groundwater flow subject to random parameters, Stochasitic hydrol. Hydraul.., 1(4), pp. 281-296, 1987.
[37] Serrano, S. E., Analysis solution of the nonlinear groundwater flow equation in unconfined aquifers and the effect of the hetterrogeneity, Water Resour. Res., 31(11), pp. 2733-2742, 1995.
[38] Serrano, S. E., The Theis solution in heterogeneous aquifers, Gruond Water, 35(31), pp. 463-467, 1997.
[39] Shamir, U. and G. Dagan, Motion of the seawater interface in coastal aquifers: A Numerical Solution, Water Resour. Res. 7(3), pp. 644-657, 1971.
[40] Wirojanagud, J. and R. J. Charbenean, Saltwater upconing in unconfined aquifers, ASCE, 111(3), pp. 417-434, 1985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔