(18.210.12.229) 您好!臺灣時間:2021/03/01 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃葳芃
研究生(外文):Wei-Peng Huang
論文名稱:芙蘿颱風(1990)的數值模擬研究
指導教授:吳俊傑吳俊傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:106
中文關鍵詞:MM5初始化方法
相關次數:
  • 被引用被引用:7
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Wu and Cheng (1999)使用ECMWF/TOGA (European Center for Medium-Range Weather Forecasts / Tropical Ocean Global Atmosphere)分析資料研究颱風Flo(1990)的增強機制,結果顯示,包括增強的外流、增加的EFC ( eddy flux convergence of relative angular momentum )、低垂直風切(在風速增加率最大時,垂直風切約3 m/s)及暖洋面溫度(約27.5-27.8℃) ,皆為其迅速增強的有利因素。但定量上,這些因子如何交互影響,則仍無清楚的瞭解。此外,因芙蘿(Flo) 颱風的生成、發展及迅速增強皆發生於海洋,且有突然轉向的情況發生,因此亦被選為COMPARE (Comparison Of Mesoscale Prediction And Research Experiment) 計畫之測試個案。綜合上述,本研究選擇芙蘿颱風做為我們進行MM5(Fifth-generation Penn. State/NCAR Mesoscale Model)數值模擬之研究個案,初期一方面探討不同初始資料及初始化過程對模擬結果的影響,一方面則希望未來能夠與Wu and Cheng (1999)之分析結果比對,並利用模式高解析度模擬的特色進行颱風結構的詳細分析,以及經由控制實驗瞭解影響颱風強度演變的主要物理機制。
本研究以美國國家大氣科學研究中心與賓州大學合作發展的第五代中尺度靜力/非靜力模式MM5為模擬工具,模擬時採用不同來源的初始資料,包括JMA (Japan Meteorological Agency) 、NCEP (National Centers for Environmental Prediction) 及ECMWF/TOGA 的網格分析資料,但由於全球分析資料所解析的颱風範圍過大且強度太弱,須使用初始化方法植入渦旋。在此採用不同初始化方法,包括: GFDL (Geophysical Fluid Dynamics Laboratory) 颱風模式初始化方法 (Kurihara et al., 1995) 、Kuo植入方法 (Kuo et al., 1997) ,前者的優點在於定義較佳的環境場,後者的優點在於由結構簡單的渦旋經預先模擬而產生與模式動力一致的渦旋。 本研究結合前兩者優點而發展一系列新方法,針對不同資料、不同初始化方法及不同初始時間做模擬測試,以瞭解這些不確定因素對模擬結果的影響。
模擬結果在路徑方面,於不同初始資料及初始化方法所得之模擬結果有明顯的差異性存在,其中採用不同初始資料(JMA與ECMWF/TOGA) ,因模擬時對太平洋副高的趨勢掌握不同,故導致對Flo颱風路徑的模擬有較大的差異。而使用相同初始資料(ECMWF/TOGA)並採用不同的初始化方法,因初始時間採用不同的渦旋植入過程,於颱風中心附近流場造成改變,模擬的路徑亦有相當程度的差別存在。大部分的模擬結果顯示,因事先已濾除分析場中之不正確颱風訊息,故以結合渦旋與經濾除颱風分量的環境場之模擬結果較佳。又所植入渦旋必須經由預先模擬過程而產生,否則開始模擬時會因渦旋結構與模式動力不一致而需一段調整期,導致模擬結果不佳。有關不同初始化過程造成不同模擬結果之原因,我們未來將使用片段位渦反求(Wu and Emanuel, 1995)方法進行量化之探討。
至於強度模擬方面,雖然模擬實驗可以掌握高層TUTT(tropical upper tropospheric trough)接近Flo颱風的過程,並與Wu and Cheng (1999)的分析結果相似。但是各模擬實驗皆無法反映Flo颱風迅速增強的情況,此結果凸顯出現階段模式掌握颱風強度演變所面臨的難題。
研究結果顯示,模擬結果對於不同初始資料及初始化方法有相當程度的敏感性,故模擬時需採用適當的初始化方法,才能得到合理的初始場,在此以初始化方法的改進做為日後繼續研究的基礎。至於造成模擬結果不佳可能的原因,包括初始資料是否掌握正確訊息、初始化作用是否適當、解析度的設定是否可解析颱風結構,亦或是模式本身物理過程所導致,都是值得未來更深入討論的問題。此外,於模擬時加入四維資料同化過程以及納入海洋回饋機制,更是將來值得探討的重點,如能發展一大氣-海洋偶合之颱風模式,對於颱風強度模擬的掌握可能有正面的影響(Ginis and Shen, 1999)。
摘要 Ⅰ
致謝 Ⅲ
目錄 Ⅳ
圖表說明 Ⅵ
第一章 前言 1
1.1 研究背景 1
1.1.1 MM5模擬回顧 3
1.1.2 超級颱風芙蘿(Flo)研究回顧 5
1.1.3 初始化方法研究回顧 7
1.1.3.1 Kuo 渦旋植入方法回顧 7
1.1.3.2 GFDL颱風模式初始化方法回顧 8
1.2 研究動機與目的 11
第二章 實驗設計 13
2.1 MM5模式簡介 13
2.1.1 動力及物理過程之處理 16
2.2 模式設定 18
2.3 模擬個案:超級颱風芙蘿(Flo)簡介 18
2.4 初始資料與初始化方法 19
第三章 模擬結果 24
3.1 渦旋植入結果的探討 24
3.1.1 海平面氣壓之比較 24
3.1.2 位渦垂直結構之比較 24
3.1.3 緯向_垂直速度垂直結構之比較 25
3.1.4 位溫垂直結構之比較 25
3.1.5 相對濕度垂直結構之比較 25
3.2 路徑 26
3.3 強度 28
3.4 垂直結構 29
3.4.1 位渦與緯向-垂直(u-w)風場之垂直剖面分布 29
3.4.2 位溫之垂直剖面分布 30
3.5 擴大邊界範圍模擬測試 31
3.5.1 實驗EW2_14擴大邊界範圍模擬測試 31
3.5.2 實驗J擴大邊界範圍模擬測試 32
第四章 結果分析與討論 33
4.1 路徑模擬結果討論33
4.1.1 實驗J與實驗EW2_14之500 mb 高度場分析 33
4.1.2 實驗J濾除颱風之環境場模擬測試 34
4.1.3 實驗EK_14與實驗EW2_14之駛流分析 35
4.2 高層355K的位渦與風場分析 37
4.3 分析結果討論 39
第五章 結語42
附錄一、Kurihara et al. (1995) 初始化方法簡介 45
附錄二、Kuo渦旋植入方法 49
附錄三、Kurihara et al. (1995)分離基本場與擾動場之平滑運算子(smoothing operator ) 54
附錄四、Kurihara et al. (1995)選定濾除範圍初始半徑之決定方法 55
附錄五、Kurihara et al. (1995)建構非颱風分量最佳內插法之應用 56
參考文獻 58
附圖 65
1. 吳俊傑、葉天降、陳得松、黃康寧,1998:颱風數值預報模式改進研究(二)。交通部中央氣象局委託計畫 成果報告。
2. 吳俊傑、顏自雄,1999:賀伯颱風(1996)之MM5數值模擬。第六屆全國大氣科學學術研討會論文彙編, 155-160。
3. 喬森,1996: 侵台颱風的MM5數值研究。國立中央大學大氣物理研究所,碩士論文。
4. Anthes, R. A., 1972: Development of asymmetries in a three-dimentional numerical model of the tropical cyclone. Mon. Wea. Rev., 100, 461-476.
5. ____, 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270-286.
6. ____, and T. T. Warner, 1978: Development of hydro-dynamical models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045-1078.
7. ____, E. -Y. Hsie, and Y. H. Kuo, 1987: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR/TN-282+STR, National Center for Atmospheric Research, Boulder, CO, 66 pp.
8. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale enviornment. Part I. J. Atmos. Sci., 31, 674-701.
9. Asai, T., 1965: A numerical study of the air-mass transformation over the Japan Sea in winter. J. M. S. J., 43, 1-15.
10. Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046-2061.
11. Betts, A., and M. J. Miller, 1986: A new convective adjustment scheme. Part Ⅱ: Single column tests using GATE wave, BOMEX, ATEX, and Arctic air-mass data sets. Quart. J . Roy. Meteor. Soc.,112, 693-709.
12. Black, P. G., and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 1348-1366.
13. Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, Vol.1, No. 1, J. Pfafflin and E. Ziegler, Eds., Gordon and Breach , 50-85.
14. Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 1998: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev.. (in press)
15. Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 1603-1618.
16. Chen, X. A., S. Low-Nam, and Y.-H. Kuo: On the initialization of typhoon in a mesoscale model. ( personal communication )
17. Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 16, 1397-1411.
18. ____, M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 2309-2330.
19. Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93-106.
20. DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133-1147.
21. ____, 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076-2087.
22. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci.,46, 3077-3107.
23. ____, 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493-1513.
24. Emanuel, K. A. 1986: An air-sea interaction for tropical cyclones. Part Ⅰ: Steady-state maintenance. J. Atmos. Sci., 43, 585-604.
25. ____, 1991: The theory of hurricanes. Annu. Rev. Fluid. Mech., 23, 179-196.
26. Flatau, M., and D. E. Stevens, 1989: Barotropic and inertial instabilities in a hurricane outflow layer. Geophys. Astrophys. Fluid. Dyn., 47, 1-18.
27. --, and --, 1993: The role of outflow-layer instabilities in tropical cyclone motion. J. Atmos. Sci., 50, 1721-1733.
28. Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722-1733.
29. Ginis, I., and W. Shen, 1999: Performance evaluation of the GFDL coupled hurricane ocean prediction system in the Atlantic basin. Proc., 23rd Conf. on Hurr. and Tropical Meteor. Amer. Meteor. Soc., Boston, MA. 607-610.
30. Grell, G. A.,1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev.,121,764-787.
31. --, J. Dudhia, and D. R. Stauffer , 1994: A description of the fifth generation Penn State / NCAR mesoscale model (MM5). NCAR Tech. Note, NCAR / TN-398+STR, 138 pp.
32. Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structure changes. Quart. J. Roy. Meteor. Soc., 110, 723-745.
33. Hong, S. -Y., and H. -L. Pan, 1996: Nonlocal booundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 12, 2322-2339.
34. Hong, X., Simon W. Chang, and Lynn K. Shay, 1998: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. 天氣分析與預報研討會論文彙編,123-128.
35. Hsie, E.-Y. and R.A. Anthes, 1984: Simulations of frontogenesis in a moist atmosphere using alternative parameterizations of condensation and precipitation. J. Atmos. Sci., 41, 2701-2716.
36. Jones, R. W., 1977: A nested grid for a three-dimentional model of tropical cyclone. J. Atmos. Sci., 34, 1528-1533.
37. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain- Fritsch scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
38. Karyampudi, V. M., G. S. Lai, and J. Manobianco, 1998: Impact of initial conditions, rainfall assimilation, and cumulus parameterization on simulations of Hurricane Florence (1998). Mon. Wea. Rev., 126, 3077-3101.
39. Kasahara, A., 1961: A numerical experiment on the development of tropical cyclone. J. Meteor., 18, 259-282.
40. Krishnamurti, T. N., D. Oosterhof, and N. Dignon, 1989: Hurricane prediction with a high-resolution global model. Mon. Wea. Rev., 117, 631-669.
41. ____, S. K. Bhowmik, D. Odsterhof, and G. Rohaly, 1995: Mesoscale signatures within the Tropics generated by physical initialization, Mon. Wea. Rev., 123, 2771-2790.
42. Kuo, Y. H., and W. Wang, 1997: Rainfall prediction of Typhoon Herb with a mesoscale model. Proc., Workshop on Typhoon Research in the Taiwan Area. Boulder, co., National Science Council, 35-45.
43. Kurihara, Y., and M. A. Bender, 1982: Structure and analysis of the eye of a numerically simulated tropical cyclone. J. M. S. J., 60, 381-395.
44. --, --, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortext specification. Mon. Wea. Rev., 121, 2030-2045.
45. --, --, R. E. Tuleya, and R. J. Ross, 1990: Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev., 118, 2185-2198.
46. --, --, --, and --, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.
47. --, --, --, and --, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 1306-1322.
48. Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev, 125, 3073-3093.
49. Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 2836-2848.
50. Low-Nam, S., X. A. Chen, and Y.-H. Kuo: Test and evalution of a tropical storm bogusing scheme.
51. McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part Ⅱ: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132-1151.
52. Merrill, R. T., 1988a: Characteristics of upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 1665-1677.
53. --, 1988b: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678-1687.
54. --, 1989: On generalizing the theory of tropical cyclones to include environmental influences. Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., J19-J20.
55. --, and C. S. Velden, 1996: A three-dimentional analysis of outflow layer of Supertyphoon Flo (1990). Mon. Wea. Rev., 124, 47-63.
56. Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part Ⅰ: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093-1105.
57. --, and --, 1990: External influences on hurricane intensity. Part Ⅱ: Vertical structure and response of hurricane vortex. J. Atmos. Sci., 47, 1902-1918.
58. --, --, and F. Robasky, 1992: Use of ECMWF operational analyses for studies of the tropical cyclone environment. Meteor. Atmos. Phys., 47, 127-144.
59. --, S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part Ⅲ: Potential vorticity structure. J. Atmos. Sci., 52, 3593-3606.
60. Ooyama. K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3-40.
61. --, 1987: Numerical experiments of steady and transient jets with a simple model of the hurricane outflow layer. Extended Abstracts, 17th Conf. on Hurricanes and Tropical Meteorology, Miami, Florida, Amer. Meteor. Soc., 318-320.
62. Pfeffer, R. L., 1958: Concerning the mechanism of hurricanes. J. Meteor., 15, 113-120.
63. --, and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 2392-2398.
64. Reisner, J., R. T. Bruintjes, and R. M. Rasmussen, 1993: Preliminary comparisons between MM5 NCAR/Penn State Model generated icing forecasts and observations. Preprints, 5th Int''l Conf. on Aviation Wea. Systems, Vienna, VA, 2-6 August, Amer. Met. Soc., Boston, 65-69.
65. Rotunno, R., and K. A. Emanuel, 1987: An air -sea interaction theory for tropical cyclones. Part Π: Evolutionary study using a non-hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561.
66. Rudolph, D. K., and C. P. Guard, 1991: 1990 Annual tropical cyclone Report. JTWC.
67. Shi, J.-J., S. Chang, and S. Raman, 1997: The dynamic interaction of an upper troposphric westerly trough and Hurricane Florence of 1988. J. Atmos. Sci., 54,1231-1247.
68. Schubert, W. H., and B. T. Alworth, 1987: Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113, 147-162.
69. Sunqvist, H. 1970: Numerical simulation of the development of tropical cyclones with ten-level model. Part Ι. Tellus, 22, 359-390.
70. Titley, D. W., and R. L. Elsberry, 1998: Large intensity changes in tropical cyclones: A case study of Supertyphoon Flo during TCM-90. ( personal communication )
71. Tripoli, G. J., 1992: An explicit three-dimentional nonhydrostatic numerical simulation of a tropical cyclone. Meteor. Atmos. Phys., 49, 229-254.
72. Willoughby, H. E., H. L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984a: Hurricane structure and evolution as simulated by an axisymmetric, non-hydrostatic numerical model. J. Atmos. Sci., 41, 1169-1186.
73. Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortext with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 62-76.
74. --, and --, 1994: On hurricane outflow structure. J. Atmos. Sci., 51, 1995-2003.
75. --, and --, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob(1991). Mon. Wea. Rev., 123, 69-92.
76. --, and --, 1995b: Potential vorticity diagnostics of hurricane movement. Part Ⅱ: Tropical storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93 -109.
77. --, and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264-2282.
78. --, and H.-J. Cheng, 1999: An observational study of environmental influences on the intensity change of Typhoons Flo (1990) and Gene (1990). Mon. Wea. Rev. (in press)
79. --, and Y.-H. Kuo, 1999: Typhoon affecting Taiwan - Current understanding and future challenges. Bulletin of Amer. Meteor. Soc, 80, 67-80.
80. --, M. A. Bender, and Y. Kurihara, 1999: On the performance of the GFDL Hurricane Prediction System in the western North Pacific and a comparison using the NOGAPS and AVN global analysis. Weather and Forecasting. (in revision)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔