(3.232.129.123) 您好!臺灣時間:2021/03/06 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡東昇
研究生(外文):DongSheng Jean
論文名稱:以冷凍/融化法處置污泥之研究
論文名稱(外文):Study on Sludge Treatment by Freezing and Thawing
指導教授:李篤中李篤中引用關係
指導教授(外文):D. J. Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:148
中文關鍵詞:冷凍/融化處置含油污泥乾冰冷凍床
外文關鍵詞:freeze/thaw treatmentoily sludgedry icefreezing bed
相關次數:
  • 被引用被引用:2
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文以四個主題探討影響污泥冷凍融化處置之因素:
一、 以四種不同種類的電解質加入污泥中,探討鹽類存在對污泥凍融處置之影響。由DSC測試結果發現,當污泥顆粒存在時,將阻礙冰/鹽共融物之生成,使得鹽類之種類對於污泥的凍融處置並無顯著影響。另對冷凍後的污泥分別冷藏2~24小時不等,以了解冷藏之效果,結果指出冷藏對於活性污泥及氫氧化鐵污泥有顯著的效果,但對於黏土污泥則影響不大,這代表並非所有污泥都要長時間冷凍方能發揮凍融處置的效果。另外經由壓榨測試可知,含NaCl之活性污泥的過濾性與污泥和電解質的接觸時間及鹽含量有顯著關係。
二、 使用凍融處置含油污泥效果比傳統之絮凝調理好得多,由實驗結果發現凍融調理程序不但能大幅改善污泥的脫水性及過濾性,更能將大部份的殘油自污泥中分離出來,進而達到資源回收的目的。
三、 本文以一改良的單方向冷凍模型,並收集過去幾年中國大陸數個主要都市之氣候資料,探討在中國地區以自然凍融法處置污泥之可行性,並據此推得處置污泥層鋪設之厚及冷凍床所需的面積。
四、 本論文嘗試以回收二氧化碳所得之乾冰作為冷源,以代替較耗費能量之冷凍機對污泥進行凍融處置並討論運用此法之效果,以期能使此程序運用於熱帶或亞熱帶地區,並舒緩二氧化碳排放所造成之全球溫暖化問題。
In this research, the factors that influence the efficiency of freeze/thaw treatment of sludge are discussed in fallowing four topics.
1. In order to realize how electrolytes affect the freeze/thaw process of sludge, four electrolytes were added into the sludge system and were cured for 2, 12 and 24 hours, respectively. Results of DSC tests imply that sludge particle might suppress the formation of salt/water eutectic, leading to a negligible effect of electrolyte species. On the other hand, curing has profound effects on activated sludge and ferric hydroxide sludge performance, whose effect, however, is negligible for clay slurry. Therefore, not any sludge needs a long time of curing. Furthermore, from the results of expression dewatering of activated sludge containing sodium chloride, the filterability of sludge has been markedly affected by the contact time.
2. Freeze/thaw treatment can yield a much better sludge filterability than does the conventional polymer flocculation. Furthermore, freeze/thaw treatment of oily sludge can not only enhance sludge filterability but also physically separate the oily phase from the sludge body.
3. This work employed a refined uni-directional freeze/thawing model together with the climate data of several cities in Mainland China for estimating the feasibility of treating sludge, using natural freeze/thaw process. The thickness of sludge layer and the area of freezing bed for sufficient treatment were reported.
4. Dry ice from recycled carbon dioxide was utilized as the heat sink for the freeze/thaw treatment as an alternative of freezing with compressor. Such a process may be feasible for tropical or subtropical countries, and possibly reduce the global warming effect caused by the discharge of carbon dioxide.
第一章、 緒論 1
第二章、 文獻回顧
2.1 冷凍/融化法之簡介及其應用 3
2.2 冷凍/融化法之機制 4
2.3 冷凍/融化處理對污泥脫水性之影響5
2.4 影響冷凍/融化處置效果之因素6
2.5 本文之目的 10
第三章、 實驗裝置與方法
3-1 污泥樣品11
3-2 實驗設備及裝置19
3-3 污泥測試 23
第四章、 電解質對凍融處置之影響
4.1電解質效應27
4.2 含NaCl之活性污泥壓榨測試35
第五章、 含油污泥之處置
5-1 含油污泥的性質64
5-2 實驗結果67
第六章、 以天然氣候進行污泥之凍/融處置
6-1冷凍床模型113
6-2 計算結果117
第七章、以乾冰(CO2)進行污泥之凍/融處置
7-1背景介紹121
7-2實驗方法123
7-3實驗結果124
第八章、結論137
第九章、參考文獻139
符號說明 147
1. Albertson, O. E., Burris, B. E., Reed, S. C., Semon, J. A., Smith, J. E., and Wallace, A. T. (1991) Dewatering Municipal Wastewater Sludge, Noyes Data Corporation, Park Ridge, New Jersey, 12.
2. Andreadakis, A.D. (1993) Physical and chemical properties of activated sludge floc, Wat. Res., 27,1707.
3. Baskerville R. C. (1971) Fil. Sep.,Mar/April, 141.
4. Batchelor, G. K., and R.W. Van Rensberg (1968) Structure formation in bidisperse sedimentation, J. Fluid Mech., 166, 379.
5. Beccari, M., P. Mappelli, and V. Tandoi, (1980) Relationship between bulking and physicochemical-biological properties of activated sludges", Biotechnol. Bioeng, 22,969.
6. Bolling, G. F., and J. Cisse, (1971) A theory for the interaction of particles with a solidfying front, J. Crystal Growth, 10,56.
7. Bruus, J.H., P. H. Hielsen, and K. Keiding, (1992) On the stability of activated sludge flocs with implications to dewatering, Wat. Res., 12,1597.
8. Busch, P.L., and Stumm, W. (1968) Chemical interactions in the aggregation of bacteria bioflocculation in waste treatment, Envir. Sci. Technol., 2,49.
9. Chang, I. L. and Lee, D. J. (1996) Expression dewatering of mixed sludges, Spectroscopy Lett., 29, 1659.
10. Chang, I. L. and Lee, D. J. (1998) Ternary expression stage in activated sludge dewatering, Wat. Res., 32, 905.
11. Chang, I. L., Chu, C. P. and Lee, D. J. (1997a) Filtration followed by expression characteristics of polymer flocculated clay sludge, J. Colloid Interf. Sci., 185, 335.
12. Chang, I. L., Chu, C. P. and Lee, D. J. (1997c) Electrokinetic property effects on expression characteristics of clay sludge, J. Envir. Sci. Hlth A, 32, 1591.
13. Chang, I. L., Chu, C. P., Lee, D. J. and Huang, C. (1997b) Filtration followed by expression characteristics of alum coagulated clay sludge, Envir. Sci. Tech., 31, 1313.
14. Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J. (1997) Continuous moisture distribution in waste activated sludge, J. Envir. Eng. ASCE, 123, 253.
15. Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J. (1996a) Regimes of zone settling of waste activated sludges. Wat. Res. 30, 1844
16. Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J. (1996b) Effects of freeze/thaw treatment on zone settling of waste activated sludges. J. Envir. Sci. Hlth A. 31, 521.
17. Chen, G. W., I. L. Chang, W. T. Hung and D. J. Lee, (1997) Continuous moisture classification in waste activated sludge, J. Envir. Eng., 123, 253.
18. Chen, G. W., Lin, W. W. and Lee, D. J. (1996) Use of capillary suction time as a measure of sludge dewaterability, Wat. Sci. Tech., 34, 443.
19. Christensen, J. R., Sorensen, P. B., Christensen, G. L., and Hansen, J. A. (1993) Mechanisms for overdosing in sludge conditioning. J. Envir. Engrg. Div., ASCE, 119, 159.
20. Chu, C. P. and Lee, D. J. (1998) Expression dewatering of sludges: effects of consolidation pressures, J.Ch. I. Envir. Eng., 8 ,1.
21. Chu, C. P., Feng, W. H., Tsai, I. H. and Lee, D. J. (1997) Uni-directional freezing of activated sludge: The presence of sodium chloride, Envir. Sci. Tech., 31,1512.
22. Chu C.P.; Feng W. H.; Tsai I. H. and Lee D. J. (1997b) Reply to commemt by Parker et al., Envir. Sci. Tech., 31, 3740.
23. Cisse, J., and G. F. Bolling (1971) Astudy of the trapping and rejection of insoluble particle during the freezing of water, J. Crystal Growth, 10, 67.
24. Chu, C. P., Lee, D. J. and C. Huang (1998) The role of ionic surfactants in compression dewatering of alum sludge, J. Colloid and Interface Science, in press.
25. Clements, G. S., Stephenson, R. J. and Regan, C. J. (1950) Sludge dewatering by freezing with added chemicals. J. Inst. Sewage Purification, 4, 318.
26. Corte, A. E., (1962) Vertical migration of particles in front of a moving freezing plane. J. Geophys. Res., 67, 1085.
27. Doe, P. W., D. Benn, and L. R. Bays (1965) The disposal of washwater sludge by freezing, J. Inst. Eater. Eng., 251.
28. Dentel, S. K. and Allen, H. E. (1997) The role of surfactants in wastewater and biosolids treatment process, Proc. Wat. Envir. Fed. 70th Ann. Conf. Exposition, Chicago, Illinois, Oct. 18-22, 311.
29. Dreith, F., and Kreider, J. F. (1978) Principles of solar engineering, McGraw-Hill Book, Co., New York, N.Y.
30. Elliott R. (1983) Eutectics Solidification Processing: Crystalline and Glassy Alloys, Butterworths & Co (Publisher) Ltd., London.
31. Eriksson, L. and Alm, B. (1993) Characterization of activated sludge and conditioning with cationic polyelectrolytes, Wat. Sci. Tech., 28, 203.
32. Forster, C. F., and J. Dallas-Newton (1980) Activated sludge settlement-some suppositions and suggestions, Wat. Pollut. Control. 79, 338.
33. Gordon A. S., and Millero F. J. (1984) Electrolyte effects on attachment of an estuarine bacterium, Appl. Environ. Microbiol, 47, 495.
34. Halde. R. (1980) Concentration of impurities by proressive freezing, Wat. Res., 14, 575.
35. Heij, E. J. La, Kerkhof, P. J. A. M., Herwijn, A. J. M. and Coumans, W. J. (1996) Fundamental aspects of sludge filtration and expression, Wat. Res., 30, 697.
36. Hellstrom, D., and Kvarnstrom, E. (1997)Natural sludge dewatering II: Thawing - Drying process in full-scale sludge freezing ditches, J. Cold Regions Eng., ASCE, 11,1.
37. Higgins M.J. and Novak, J. T. (1997) The effect of cations on the settling and dewatering of activated sludges -Laboratory results. Wat. Envir. Res., 69, 215.
38. Hong, S. G., Young, Y. D., Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J. (1995), Freeze/thaw Treatment on Waste Activated Sludge: An FTIR Spectroscopic Study. J. Envir. Sci. Hlth A. 30, 1717.
39. Horan, N., and C. R. Eccles (1986) Purification and caracterization of etracellular plysaccharides from activated sludge, War. Res., 20, 1427.
40. Hung, W. T. and Lee, D. J. (1996) Unidirectional freezing of cupric hydroxides sludge. J. Envir. Sci. Hlth A, 31, 2129.
41. Hung, W. T., Chang, I. L., Hong, S. G., Young, S. D., Chen, G. W. and Lee, D. J. (1996c) Floc migration and chemical compositions changes in a freezing chamber. J. Envir. Sci. Hlth A, 31, 1053.
42. Li, D. H., and J. J. Canczarczyk (1990) Structure of activated sludge flocs, Biotechnol Bioengng., 35, 57.
43. Hung, W. T., Chang, I. L., Lee, D. J. and Hong, S. G. (1996a) Uni-directional freezing of waste activated sludge: Floc migration and chemical compositions changes. Wat. Sci. Tech., 34, 525.
44. Hung, W. T., Chang, I. L., Lin, W. W. and Lee, D. J. (1996b). Uni-directional freezing of waste activated sludges: Effects of freezing speed. Envir. Sci. Tech., 30, 2391.
45. Hung, W. T., Feng, W. H., Tsai, I. H. and Lee, D. J. (1997). Uni-directional freezing of waste activated sludges: Vertical freezing versus radial freezing. Wat. Res., 31, 2219.
46. Kamst, G. F., Bruinsma, O. S. L. and de Graauw, J. (1997a) Solid-phase creeping during the expression of palm-oil filter cakes. AIChE J., 43, 665.
47. Kamst, G. F., Bruinsma, O. S. L. and de Graauw, J. (1997b) Permeability of filter cakes of palm oil in relation to mechanical expression. AIChE J., 43, 673.
48. Katz W. J. and Mason D. G. (1970) Freezing methods used to condition activated sludge. Wat. Sew. Wks. 110.
49. Kawasaki K.; Matsuda A. (1993) Freezing and thawing of excess activated sludge to improve the solid liquid separation characteristics. 6th World Fil. Cong., Nagoya, Japan, 865.
50. Kawasaki, K., Matsuda, A. and Murase, T. (1994) The effects of a freezing and thawing process on the expression characteristics and final moisture content of excess activated sludge, Int. Chem. Engng., 34, 403.
51. Kawasaki K.and Matsuda A. (1995) Effect of dissolved solid concentration on freezing and thawing of excess activated sludge. Kagaku Kogaku Ronbunsyu, 21, 859.
52. Keith, L. H., Mueller, W. and Smith, D. L. (1991) Compilation of EPA''s sampling and analysis methods, Boca Raton, Fla.; Method US EPA 1664M, CRC Press, U.S.A.
53. Kenji Y. (1998) Astudy of the role of end-of-pipe technlolgies in reducing CO2 emissions, Waste Management, 17, 295.
54. Knocke, W. R. and Trahem, P. (1989) Freeze-thaw conditioning of chemical and biological sludges. Wat. Res. 23, 35.
55. Kuo and Wilcox (1973) Removal of particles by solidification, Ind. Engng. Chem. Process and design Development, 12, 376.
56. Lee, D. J. (1994a) Floc structure and bound water content in excess activated sludges, J. Ch. I. Ch. E., 25, 201.
57. Lee, D. J. and Hsu, Y. H. (1994) Fast freeze/thaw treatment on waste activated sludge: Floc structure and sludge dewaterability, Envir. Sci. Tech., 28, 1444.
58. Lee, D. J. and Hsu, Y. H. (1995) Measurement of bound water in sludge: A comparative study, Wat. Envir. Res., 67, 310.
59. Lee, D. J. and Lee, S. F. (1995) Measurement of bound water in waste acitvated sludge: Use of differential scanning calorimetry (DSC), J. Chem. Tech. Biotechnol., 62, 359.
60. Lee, D. J. (1994b) Measurement of bound water in sludges: Use of centrifugal settling method, J. Chem. Tech. Biotechnol., 61, 139.
61. Lee D. J. and Huang, W. W. (1996) Enthaply-entropy compensation of micellization of SDS in water/methanol, water/enthylene glycol, and water/glycerol binary mixtures, Colloids Ploym. Sci. 174, 160.
62. Leu, W. F. (1981) Cake Filtration ph.D. Dissertation, Univ of Houston, Houston, TX.
63. Li D. H. and Ganczarczyk, J. .J. (1990) Structure of activated sludge flocs, Biotechnol. Bioengng., 35,57.
64. Logsdon G. S. and Edgerley, Jr. E. (1971) Sludge dewatering by freezing. J. Am. Wat. Wks Ass., 63, 734.
65. Martel C. J. (1989a) Dewaterability of freeze-thaw conditioned sludges. Res. J. Wat. Pollut. Control Fed., 61, 237.
66. Martel, C. J. (1989b) Development of design for sludge freezing beds, Envir. Eng . ASCE,115,799.
67. Martel C. J. (1988) Predicting freezing design depth of sludge freezing beds. J. Cold Regions Eng., ASCE, 2, 145.
68. Martel C. J., Affleck, R. and Yushak, M. (1998) Operational parameters for mechanical freezing of alum sludge. Wat. Res., 32, 2464.
69. Martel, C. J., and Diener, C. J. (1991) A pilot-scale study of alum sludge dewatering in a freezing bed, J.Am.Water Asso., 83, 51.
70. Moudgil, B. M. and Shah, B. D. (1986), Selection of Flocculants for Solid-liquid Separation Processes. In Advances in Solid-liquid Separation. Ed. by H. S. Muralidhara, Battelle press, Columbus, Ohio.
71. Parker P. J.; Collins A. G. and Dempsey J. P. (1997) Comment on "Unidirectional freezing of waste activated sludge: The presence of sodium chloride, Envir. Sci. Tech., 31, 1512-1517(1997)" Envir. Sci. Tech., 31, 3740.
72. Parker P. J.; Collins A. G. and Dempsey J. P. (1998a) Effects of freezing rate, solids content, and cruing time on freeze/thaw conditioning of water treatment residuals. Envir. Sci. Tech., 32, 383.
73. Parker P. J.; Collins A. G. and Dempsey J. P. (1998b) Alum residual floc interactions with an advancing ice/water interface. J. Envir. Eng. ASCE, 124, 249.
74. Randall C. W., Khan M. Z. and Stephens N. T. (1975) Waste activated sludge conditioning by direct slurry freezing. Wat. Res. 9, 917. Roberts, K., and O. Olsson (1975) Influence of colloidal particles on dewatering activated sludge with polyelectrolyte, Environ. Sci. Technol., 9, 945.
75. Ralldall, C. W. (1978) Butane is nearly "ideal" for direct slurry freezing, Water and Waste Engineering, 15, 43.
76. Rasmussen, H. Bruus, J. H., Keiding, K., and Nielsen, P. H. (1994) Observations on dewaterability and physical chemical and microbiological changes in anaerobically stored activated sludge from a nutrient removal plant, Wat. Res., 28, 417.
77. Shirato, M., Murase T., Hayashi, N. and Fukushima, T. (1977) Constant pressure expression of solid-liquid mixtures with medium resistance, J. Chem. Eng. Japan, 10, 154.
78. Shirato, M., Murase T., Kato, H. and Fukaya, S. (1970) Fundamental analysis for expression under constant pressure, Filtr. Sep., 7, 277.
79. Shirato, M., Murase, T., Kato, H. and Fukaya, S. (1967) Expression under constant pressure, Kagaku Kogaku, 31, 1125.
80. Shirato, M., Murase, T., Kato, H. and Shibata, M. (1965) Analysis for constant pressure expression mechanism, J. Fermentation Eng., 43, 255.
81. Shirato, M., Murase, T., Tokunaga, A. and Yamada, O. (1974) Calculations of consolidation period in expression operations, J. Chem. Eng. Japan, 7, 229.
82. Shirato, M., T. Murase, K. Atsumi, T. Aragaki, and T. Noguchi (1979) Industrial expression equation for semi-solid materials of solid-liquid mixture under constant pressure, J. Chem. Eng. Japan, 12, 51.
83. Shirato, M., T. Murase, K. Atsumi, T. Nagami, and H. Suzuki (1978) Creep constants in expression of compressible solid-liquid mixtures, J. Chem. Eng. Japan, 11, 334.
84. Silvares, O. M., Cravalho, E. G., Toscano, W. M. and Huggins, C. E. (1975) The thermodynamics of water transport from biological cells during freezing. ASME J. Heat Transfer, 97, 582.
85. Stoll, U. and Gupts H. (1997) Management strategies for oil and grease residues, Waste Management and Research, 15, 23.
86. Tay, J. and Jeyaseelan, S. (1993) Dewatering characteristics of oily sludge, Water Science and Technology, 28, 249.
87. Tay, J. and Jeyaseelan, S. (1997a) Conditioning of oily sludges with municipal solid wastes incinerator fly ash, Water Science and Technology, 35, 231.
88. Tay, J. and Jeyaseelan, S. (1997b) Conditioning of oily sludges with alum, Environmental Monitoring and Assessment, 44, 263.
89. Tiller, F. M. and Yeh, C. S. (1987) The role of porosity in filtration. Part XI: Filtration followed by expression, AIChE J., 33, 1241.
90. Tiller, F. M. and Kwon, J. H. (1998) The role of porosity in filtration XI: Behavior of highly compactible cakes, AIChE, 44, 2159.
91. Tambo N. and Watanabe Y. (1979) Physical characteristics of flocs-I. The floc density function and the aluminum floc. Wat. Res. 13, 409.
92. Uhlman, D. R., Chalmers, B., and Jackson, K. A. (1963) Interaction between particles and a solid-liquid interface. J. Appl. Phys., 35, 2986.
93. Vesilind P. A. (1988) Capillary suction time as a fundamental measure of sludge dewaterability, Res. J. Wat. Pollut. Control Fed., 60, 215.
94. Vesilind P. A.; Martel C. J. (1990) The freezing of water and wastewater sludges, J. Envir. Eng., 116, 854.
95. Vesilind P. A.; Wallinmaa S.; Martel C. J. (1991) Freeze-thaw sludge conditioning and double layer compression, Can. J. Civ. Eng., 18, 1078.
96. Vol''khin V. V., Ponomarev E. I. (1965) Effect of freezing on the properties of coagulated metal hydroxides. 5:Mechanism of the process, Colloid J. (USSR), 27, 10.
97. Vol''khin V. V., Zolotavin V. L. (1961) The effect of freezing on the properties of metal hydroxide coagulates. Part 2: Effect of electrolytes on changes of the volume of ferric hydroxide coagulate as a result of freezing, Colloid J. (USSR), 23, 113.
98. Vol''khin V. V., Zolotavin V. L. and Tipikin, S. A. (1961) The effect of freezing on the properties of metal hydroxide coagulates. Part 4: Manganese dioxide coagulate, Colloid J. (USSR), 23, 339.
99. Wen, H. J., Liu, C. I., and Lee, D. J. (1997), Size and density of flocculated sludge flocs, J. Environ. Sci. Health A, 32, 1125.
100. Wu, X. (1997) A study of variable pressure consolidation. J. Soc. Powder Tech. Japan, 34, 84.
101. Wu, X., Itou, H., Ono, K. and Nagase, Y. (1996b) Consolidation analysis: An approximation theory of consolidation. J. Soc. Powder Tech. Japan, 33, 10.
102. Wu, X., Mukunoki, A., and Nagase, Y. (1996a) Consolidation analysis: Mechanical characteristics of a particle bed. J. Soc. Powder Tech. Japan, 33, 4.
103. Yeh C. S. (1985) Cake deliquoring and radial filtration. Doctoral dissertation, University of Houston, Houston, Texas.
104. Zall J., Galil, N. and Rehbun (1987) Skeleton builders for conditioning oily sludge, Journal of Water Pollution Control Federation, 59, 699.
105. Zhu, X., Reed, B. E., Lin, W., Carriere P. E. and Roark, G. (1997) Investigation of emulsified oil wastewater treatment with polymer, Separation Science and Technology, 32, 2173.
106. Zita, A., and Hermansson, M. (1994) Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system, Appl. Environ. Microbiol, 60, 3041.
107. Zita, A., and Hermansson, M. (1997) Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs, Appl. Environ. Microbiol, 63, 1168.
108. 中國技術服務社工業污染防治技術服務團 (1995), 廢水處理功能生物診斷技術, 經濟部工業局, 199.
109. 傅誠剛 (1998), 界面活性劑對污泥調理及脫水之影響, 碩士論文, 國立交通大學環境工程研究所, 新竹.
110. 劉博文, 郭修宇, 謝政達 (1993) 油庫含油廢水處理介紹, 第十八屆廢水處理 技術研討會論文集, 臺中, 905.
111. 吳志超 (1997), 以高分子調理鋁鹽污泥對其脫水性影響之研究, 博士論文, 國立交通大學環境工程研究所, 新 竹.
112. 朱敬平, 張怡隆, 李篤中, 「壓榨操作研究之文獻回顧」, (1997), 化工, 3, 79.
113. 王仲峰, 陳振聲 (1993) 高雄煉油總廠MOSC油渣處理工程, 第三屆工業減 廢技術與策略研討會論文集, 臺北, 36-1.
114. 許恆瑜 (1998), 含油污泥調理脫水行為之研究, 碩士論文, 國立臺灣科技大學化學工程研究所, 臺北.
115. 陳琪璜, 黃春鶯 (1993) 煉油廠廢油泥減廢處理技術, 第三屆工業減廢技術與策略研討會論文集, 臺北, 16-1.
116. 陳蓋文(1995),冷凍/融化法與活性污泥特性之研究,碩士論文,臺灣大學化學工程研究所,臺北市。
117. 張怡隆(1996),污泥壓榨特性之研究,碩士論文,臺灣大學化學工程研究所,臺北市。
118. 洪文通(1996),污泥之凍/融處置,碩士論文,臺灣大學化學工程研究所,臺北市。
119. 蘇燕珠(1993),土壤滲透性與孔隙分佈相關性之研究,碩士論文,臺灣大學農業工程研究所,臺北市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔