(34.237.124.210) 您好!臺灣時間:2021/02/25 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彥士
研究生(外文):Yen-Shih Huang
論文名稱:聚乙烯乙烯醇薄膜於藥物制放之應用
論文名稱(外文):Poly(ethylene-co-vinyl alcohol) membranes for drug delivery system
指導教授:陳劉旺陳劉旺引用關係
指導教授(外文):Leo-Wang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:84
中文關鍵詞:聚乙烯乙烯醇EVAL間胺基水楊酸5-ASA藥物釋放靜電排斥
外文關鍵詞:Poly (ethylene-co-vinyl alcohol) membranes (EVAL)5-ASAcolon-specific drug deliveryelectro-repulsion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用相轉換法製備高分子薄膜。藉著改變物理和化學性質,設計局部治療藥物制放所需薄膜應用於腸胃道藥物之包覆材料,希望藥物在酸性環境被保護,至微鹼性環境時始大量釋放。
以聚乙烯乙烯醇(EVAL)為材質、異丙醇/水為共溶劑、並以乾式法製備的E2膜符合此要求,在酸性環境,5-ASA透過E2膜只有微量的藥物釋放;但在微鹼性環境,5-ASA透過E2膜卻有較多藥物釋放量,滲透係數P由pH 2.00的0.034*10-3 cm2/hr提升至pH 7.40的0.184*10-3 cm2/hr。影響的因素主要是5-ASA在酸性環境裡與E2膜產生靜電排斥力,抑制其釋放速率。
至於聚乙烯醇(PVA)薄膜則因膨潤度主導藥物釋放,在酸性環境時,靜電排斥力的效應不明顯,故藥物釋放情形不隨酸鹼值環境而改變。
另外將離胺酸接枝至E2膜表面後,可增進藥物釋放的效果,其滲透係數P分別為pH 2.00時的0.139*10-3 cm2/hr和pH 7.40時的0.312*10-3 cm2/hr,皆較未改質前的E2薄膜大。
因此EVAL薄膜具有開發潛力,可做為離子性藥物之包覆材料,以應用於腸胃道疾病之局部治療。
The polymer membranes for colon-specific drug delivery system were prepared by phase inversion method. The physical and chemical properties change was discussed in this study.
The dense E2 membranes made of EVAL with dry process and IPA/Water as co-solvent were suitable for the application. The drug, 5-ASA, had little transport through the E2 membranes at pH 2.00. However, 5-ASA released more at pH 7.40. The permeability was risen from 0.034*10-3 at pH 2.00 to 0.184*10-3 cm2/hr at pH 7.40. There would be an electro-repulsion between 5-ASA and membranes at pH 2.00. Therefore, it might inhibit the release.
However, the swelling properties of PVA membranes dominate the drug delivery. The electro-repulsion effects might be ignored and there was no difference between the drug releases at two pH values.
In addition, the Lysine-modified E2 membranes had better drug release. The permeabilities were lager both at pH 2.00 (0.139*10-3 cm2/hr) and pH 7.40 (0.312*10-3 cm2/hr) than original.
The study shows that the EVAL membranes are promising candidates for providing a colon-specific drug delivery.
第一章緒論1
第二章文獻回顧 3
2-1高分子薄膜3
2-2薄膜結構4
2-3薄膜製備5
2-4藥物釋放6
2-5薄膜表面改質9
2-6研究動機與內容11
第三章研究方法與原理13
3-1吸水膨潤度13
3-2薄膜的膨潤動力學15
3-3 藥物於薄膜中的擴散行為17
3-4 表面電位(Zeta potential)量測19
第四章實驗23
4-1實驗藥品24
4-2儀器設備26
4-3 高分子薄膜製備 29
鑄膜溶液配置29
EVAL緻密薄膜製備30
EVAL非對稱薄膜製備30
PVA緻密薄膜製備31
4-4薄膜表面改質31
4-5 薄膜性質測試33
掃瞄式電子顯微鏡(SEM)觀察33
熱微差掃瞄卡計(DSC)分析33
衰減全反射-傅力葉變換紅外光譜儀觀察34
4-6薄膜膨潤實驗34
4-7 藥物釋放實驗35
實驗藥物35
定量分析儀器37
藥物透過率測試37
藥物導電度測試38
第五章 結果與討論39
5-1 高分子薄膜製備39
5-2 鑄膜溶液對薄膜結構之影響40
5-3 藥物檢量線之測定46
5-4 薄膜結構對藥物釋放的影響51
5-5 薄膜親水性對藥物釋放的影響55
5-6 薄膜膨潤度與藥物釋放之探討58
5-7 藥物與高分子薄膜間作用力之探討64
5-8 薄膜表面改質70
第六章結論與建議76
參考文獻78
1. Baker, Controlled Release of Biologically Active Agents,
John wiley & Sons, New York (1987).
2. Chien (ed.), Novel Drug Delivery Systems, Marcel Dekker,
Inc., New York (1990).
3. Anderson (ed.), Advances in Drug delivery System, 4,
Elsevier Science Publishing Co. Inc., New York (1990)
4. Lim (ed.), Biomedical Applications of Microencapsulation,
CRC Press, Inc., Florida (1985)
5. Deasy, Microencapsulation and Related Drug Process, Marcel
Dekker, Inc, New York (1984)
6. Kesting, Synthetic Polymeric Membranes, John Wiley and Sons,
New York, NY, 1985.
7. T.H. Young, J.Y. Lai, W.M. You and L.P. Cheng, Equilibrium
phase behavior of the membrane forming water-DMSO-EVAL
copolymer system, J. Membrane Sci., 128 (1997) 55-65.
8. T.H. Young, N.K. Yao, R.F. Chang and L.W. Chen, Evaluation
of asymmetric poly(vinyl alcohol) membranes for use in
artificial islets, Biomaterials, 17 (1996) 2139-2145
9. T.H. Young, L.W. Chen and L.P. Cheng, Membranes with a
microparticulate morphology, Polymer, 37 (1996) 1305-1310.
10.T.H. Young and L.W. Chen, Pore formation mechanism of
membranes from phase inversion process, Desalination, 103
(1995) 233-247.
11.T.H. Young and L.W. Chen, Roles of bimolecular interaction
and relative diffusion rate in membrane structure control,
J. Membrane Sci., 83 (1993) 153-166.
12.T.H. Young and L.W. Chen, A diffusion-controlled model for
wet-casting membrane formation, J. Membrane Sci., 59 (1991)
169-181.
13.L.W. Chen and T.H. Young, Effect of non-solvents on the
mechanism of wet-casting membrane formation from EVAL
copolymers, J Membrane Sci., 59 (1991)15-26.
14.T.H. Young and L.W. Chen, A two step mechanism of diffusion-
controlled ethylene vinyl alcohol membrane formation, J
Membrane Sci., 57 (1991) 69-81.
15.L.W. Chen and T.H. Young, EVAL membranes for blood dialysis,
Makromol. Chem., Macromol. Symp., 33 (1990) 183-199.
16.C.Y. Wang, J.M. Wong, M.J. Shieh, W.B. Lein, Biomed Eng Appl
Basis Commu., 4 (1992) 269-277.
17.M.J. Shieh, Long-term outcome of Chinese patients with
ulcerative colits: experience with 259 patients over a 20-
year period, J Tokyo Women’s Med College, 62 (1992) 933-944.
18.J. Rhodes, B.K. Evans, Delayed release of oral dosage forms,
UK patent, GB, 2123695 B, 1985.
19.B.M. Calkins, A.I. Mendeloff, Epidemiology of inflammatory
bowel disease. Epidemiol Rev., 8 (1986) 60-91.
20.B. Nordenvall, O. Brostom, M. Burglund et al, Incidence of
ulcerative colitis in Stockholm country 1955-1979, Scand J
Gastroenterol, 20 (1985) 783-790.
21.Loeb, and S. Sourirajan, Sea water demineralization by means
of an osmotic membrane, Adv. Chem. Ser., 38 (1963), 117.
22.Y.S. Kang, H.J. Kim, U.Y. Kim, Asymmetric membrane formation
via immersion precipitation method. I. Kinetic effect, J.
Membrane Sci., 60, (1991), 219-232.
23.M. Mulder, Basic principle of membrane technology, Kluwer
Academic Publisher, London, 1991.
24.J.H. Baron, A.M. Connell, J.E. Lennard-Jones etal,
Sulphasalazine and Salicylazosulphadimidine in ulcerative
colitis. Lancet, 1 (1962) 1094-1096.
25.A.S. Dissanayake, S.C. Truelove, A controlled therapeutic
trial of long-term maintenance treatment of ulcerative
colitis with sulphasalazine (salazopyrin), Gut, 17 (1973)
923-926.
26.J.B. Kirsner, IBD Shorter, 2nd Ed. Lea and Febiger;
Philadelphia, (1980) 413-446.
27.PAM van Hees, J.H. Bakker, J.H.M. van Tongeren, Effect of
sulphapyridine, 5-aminosalicylic acid and placebo in
patients with idopathic procitis: A study to determine the
active therapeutic moiety of sulphasalazine, Gut, 21 (1980)
632-635.
28.U. Klotz, K. Maier, C. Fischer et al, Therapeutic efficacy
of sulfasalazine and its metabolites in patients with
ulcerative colitis and Crohn’s disease, N Engl J Med, 303
(1980) 1499-1502.
29.H. Brondsted, C. Anderson, L. Hovgaard, Crosslinked
dextran- a new capsule material for colon targeting of
drugs, J. Controlled Release, 53 (1998), 7-13.
30.M.R. Jenquin, S.M. Liebowitz, R.E. Sarabia and J.W.
McGinity, Physical and chemical factors influencing the
release of drugs from acrylic resin films, J. Pharmac. Sci.,
79 (1990), 811-816.
31.S. Narisawa, M. Nagata, Y. Hirakawa, M. Kobayashi and H.
Yoshino, An organic acid-induced sigmoidal release system
for oral controlled-release preparations. 2. Permeability
enhancement of Eudragit RS coating led by the
physicochemical interactions with organic acid, J. Pharmac.
Sci., 85 (1996), 184-188.
32.G.H. Hsiue, C.M. Liao and S.Y. Lin, Effect of drug-polymer
interaction on the release characteristics of methacrylic
acid coplymer microcapsules containing theophylline,
Artificial Organs, 22 (1998), 651-656.
33.K.K. Chittur, Surface techniques to examine the biomaterial-
host interface: an introduction to the papers, Biomaterials,
19 (1998), 301-305.
34.A.S. Blawas, W.M. Reichert, Protein pattenning,
Biomaterials, 19 (1998), 595-609.
35.G.S. Bethell, J.S. Ayers, W.S. Hancock, A Novel Method of
Activation of Cross-linked Agaroses with 1,1’-
Carbonyldiimidazole Which Gives a Matrix for Affinity
Chromatography Devoid of Additional Charged Groups, J Bio.
Chem., 254 (1979), 2572-2574.
36.S.K. Bhatia, L.C. Shriver-Lake, K.J. Prior et al, Use of
Thiol-Terminal Silanes and Heterobifunctional Crosslinker
for Immobilization of Antibodies on Silica Surface,
Analytical Biochemistry, 178 (1989), 408-413.
37.G.D. Guerra, N. Barbani et al, The Activation of Human
Plasma Prekallikrein as a Hemocompatibility Test for
Biomaterials. II. Contact Activation by EVAL and EVAL-SMA
copolymers, J Biom. Sci. Polym. Ed., 4 (1993), 643-652.
38.A. Kondoh, K. Makino and T. Matsuda, Two-Dimensional
Artificial Extracellular Matrix: Bioadhesive Peptide-
Immobilized Surface Design, J Appli. Polym. Sci., 47 (1993),
1983-1988.
39.T. Miron and M. Wilchek, Immobilization of Proteins and
Ligands Using Chlorocarbonates, J Appli. Polym. Sci., 63
(1997), 1579-1588.
40.許紹菁, 離子性藥物於具胺基之甲基丙烯酸酯共聚合物膜材內之輸送
性質, 元智化工所碩士論文, (1999), 13-20.
41.Y.M. Sun and J.N. Chang, Solute Transport in Poly(2-
hydroxylethyl methacrylate) Hydrogel Membranes, J Polym.
Res., 2 (1995), 71-82.
42.Kitahara and Watanaba, Electrical Phenomena at Interfaces:
Fundamentals, Measurements, and Applications, Marcel Dekker,
New York (1984).
43.Shaw and D.J., Introduction to Colloid and Surface
Chemistry, Oxford, Boston (1992).
44.Hunter and R.J., Zeta Potential in Colloid Science:
Principles and Applications, Academic Press, New York (1981).
45.American Hostipal Fromulary Service, Drug Information,
American Society of Hospital Pharmacists, MD, (1993), 1838-
1842.
46.T.A. Geissman; Principles of organic chemistry; W. H.
Freeman and Company, San Francisco, (1968).
47.T.H. Young and W.Y. Chuang, The Different Swelling Behaviors
of EVAL, Polyurethane and EVAc in EtOH/Water System,
Macromolecules, submitted.
48.林榮耀, 生物化學指引(上), 南山堂出版社, 臺北, (1985), 64-
80.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔