(18.210.12.229) 您好!臺灣時間:2021/03/05 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳富其
研究生(外文):Wu, Fu-Chi
論文名稱:LixMn2O4陰極材料之製備及其充放電行為之研究
論文名稱(外文):A Study on the Preparation of LixMn2O4 Cathode Materials and Their Charge/Discharge Behaviors
指導教授:何國川
指導教授(外文):Ho, Kuo-Chuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:166
中文關鍵詞:充放電集電板鋰離子電池LixMn2O4陰極鈍化現象分段持溫燒結
外文關鍵詞:charge/dischargecollectorlithium ion batteriesLixMn2O4 cathodepassivationsintering in multi-steps
相關次數:
  • 被引用被引用:3
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃在探討鋰離子電池用LixMn2O4陰極材料之製備,並研究其電化學特性與評估其組裝後的電池性能。實驗上以熱分析結果來決定材料的製備方法,使用高溫固態反應的方式,在選定的四種不同之氣氛下燒結不同比例混合之LiNO3與MnO2原料,隨後並使用PVDF為固定劑將所製備得之LixMn2O4材料製作成電極,利用交流阻抗法與循環伏安法分析其電化學特性,最後再以1M LiPF6+EC/DMC(1:1 in vol.)為電解液組裝成Li/ LixMn2O4電池來測試其電池性能。
由實驗發現,LiNO3與MnO2在470℃時即反應生成LixMn2O4材料,而影響製備的原因除了燒結溫度外,氣氛、流速、原料混合比例以及原料之顆粒大小都會影響燒結的結果。若使用銅箔作為電極之集電板,在進行充放電測試時銅會有氧化溶出並在陽極鋰箔上沈積的現象,而使用鋁箔作為集電板時,若在製作電極前不去除鋁箔表面之氧化層的話,則將會阻礙反應之進行。
在電化學分析上,本研究使用交流阻抗法發現陽極鋰箔隨著儲存時間之增加而有鈍化的現象。另外,本研究還從結構的角度上,深入地探討循環伏安法所得之氧化還原峰,與LixMn2O4材料在2.5 V至4.5 V間隨鋰之嵌入/脫出所形成的穩定結構,以及電池在2.5 V至4.5 V間充放電所得到之充放電平台等三者之間的關連性,並合理地解釋了LixMn2O4材料之充放電行為。
最後,本研究還針對不同製備條件下所製備得之LixMn2O4材料所組成之硬幣型電池進行循環充放電測試,發現在氮氣中燒結所得之材料的電容量有隨最後燒結溫度之增加而增加的趨勢,而使用未經球磨的MnO2依Li/Mn=0.6之比例與LiNO3混合,在氧氣中分段持溫燒結所得之材料,在0.5 mA/cm2之速率下循環充放電20圈具有平均約105 mAh/g的電容量,而最高可達到將近125 mAh/g之值。
This study is about the preparation and characterization of LixMn2O4 cathode for lithium ion batteries. The preparation conditions were determined from the thermal properties of lithium nitride (LiNO3) and manganese dioxide (MnO2). The row materials were sintered in different atmospheres (air, nitrogen, oxygen and argon) with different mix ratios in a temperature programmable furnace. The LixMn2O4 electrodes were made by using the PVDF binder. The testing cells or coin-type cells were assembled by using the prepared electrodes as the cathode, 1M LiPF6+EC/DMC(1:1 in vol.) as the electrolyte, and the lithium foil as the anode. The cells were tested using various electrochemical methods (ac impedance, cyclic voltammetry, and cyclic charge/discharge testing).
It was found experimentally that the sintering temperature, atmosphere, gas flow rate, mix ratio and the particle sizes of the row materials do affect the results of preparation. When copper foil was used as the current collector, the dissolution, electromigration and electrodeposition of Cu prevented the reaction when cell was charged. When aluminum foil was used as the collector, the reaction was still prevented if the aluminum oxide on the surface was not properly removed.
The passivation phenomena on the metallic lithium were detected by the ac impedance analysis. Besides, we first discussed the charge/discharge behaviors of the LixMn2O4 material from the viewpoint of structural change. Attempts were made to relate the cyclic voltammograms, charge/discharge curves and the structures of LixMn2O4 material. The behaviors can be reasonably explained by using the formation of three stable structures under three different potentials.
Finally, cyclic charge/discharge testing of the coin cells, which were assembled by LixMn2O4 prepared under different conditions, revealed that, when sintered in nitrogen, the capacities increased with the sintering temperature. When sintered in O2 by using the non-milled MnO2 mixed with LiNO3 at the ratio of Li/Mn=0.6, the capacity was about 105 mAh/g on average discharging at 0.5 mA/cm2 for the first 20 cycles and reached the highest value of 125 mAh/g.
第一章 緒言…………………………………………………1
1-1 前言………………………………………………………1
1-2 鋰電池的歷史……………………………………………1
1-3 鋰離子電池………………………………………………2
1-4 嵌入化合物………………………………………………5
1-5 目前在鋰離子電池上之研究情形………………………6
1-5-1 目前在陽極材料方面之研究…………………………6
1-5-2 目前在電解質系統上之研究…………………………7
1-5-3 目前在陰極材料方面之研究…………………………9
1-6 研究目的…………………………………………………10
第二章 文獻回顧……………………………………………12
2-1 Li-Mn-O系過渡金屬氧化物的製備……………………12
2-2 LiMn2O4陰極電容量衰退之現象………………………17
2-2-1 兩極間之電容量的平衡………………………………18
2-2-2 過充電所造成之電容量損失…………………………20
2-2-3 電解液還原反應所造成之電容量損失………………21
2-2-4 Mn溶解所造成之電容量損失…………………………25
2-2-5 相轉變所造成之電容量損失…………………………27
第三章 實驗設備與方法……………………………………29
3-1 實驗儀器設備……………………………………………29
3-2 實驗藥品與器材…………………………………………30
3-3 研究架構圖………………………………………………31
3-4 LiMn2O4陰極材料製備…………………………………32
3-5 材料鑑定與分析…………………………………………32
3-5-1 熱重分析(TGA/DTA)………………………………32
3-5-2 X光粉晶繞射分析(powder-XRD)…………………34
3-5-3 感應耦合電漿原子放射光譜分析(ICP-AES)……34
3-5-4 能量分散光譜分析(EDS)…………………………35
3-6 陰極片之製作……………………………………………35
3-7 測試電池之組裝…………………………………………36
3-7-1 電化學測試槽之組裝…………………………………36
3-7-2 硬幣型電池之組裝……………………………………37
3-8 電化學分析………………………………………………37
3-8-1 循環伏安分析…………………………………………37
3-8-2 交流電阻抗分析………………………………………40
3-8-3 循環充放電測試………………………………………41
第四章 材料之製備、物性量測與鑑定………………………42
4-1 熱重分析決定材料之製備方法…………………………42
4-1-1 影響燒結反應之因素………………………………42
4-1-2 LiNO3的熱分析………………………………………43
4-1-3 MnO2的熱分析…………………………………………43
4-1-4 燒結製備LixMn2O4的熱分析…………………………48
4-1-5 LixMn2O4之製備方法的決定…………………………52
4-2 材料結構特性之鑑定與分析……………………………53
4-2-1 由X光粉晶繞射鑑定不純物…………………………53
4-2-2 不同燒結氣氛所得材料之鑑定與分析………………57
4-2-3 原料粒徑與混合比例對製備的影響…………………69
4-2-4 以酒精處理去除過剩之鋰鹽的製備方法……………72
第五章 材料之電性量測與電化學分析………………………75
5-1 交流阻抗分析之原理……………………………………75
5-1-1 交流阻抗法在電化學分析上的優點…………………75
5-1-2 基本交流電路與其阻抗圖譜…………………………77
5-1-3 交流阻抗分析在電化學上的假設……………………83
5-1-4 簡單電化學系統之阻抗分析…………………………84
5-2 製作電極時所遇到之問題與解決………………………90
5-2-1 導電添加劑之選擇……………………………………90
5-2-2 集電板之選擇…………………………………………90
5-3 陽極鋰箔之鈍化現象……………………………………100
5-4 利用循環伏安法分析材料之充放電行為………………105
5-4-1 利用循環伏安法確定材料之充放電範圍……………105
5-4-2 從結構的觀點探討材料之充放電行為………………108
5-5 循環充放電分析電池之性能……………………………111
5-5-1 各製備條件所得材料之充放電容量…………………111
5-5-2 材料充放電之循環效率………………………………135
第六章 總結與建議…………………………………………142
6-1 總結………………………………………………………142
6-2 建議………………………………………………………144
第七章 參考文獻……………………………………………145
附錄……………………………………………………………151
附錄A…………………………………………………………151
附錄B…………………………………………………………155
附錄C…………………………………………………………156
中文參考資料
[1] 李世興, “電池活用手冊,” 全華科技圖書股份有限公司, p.29
(1997).
[2] 洪為民, “方形二次鋰離子電池產品、應用與市場,” 工業材料130
期, p.92 (1997).
[17] 王文竹, 唐啟文, “固態電解質鋰電池,” pp.97-104 (1989).
[3] B. Scrosati, “Lithium Polymer Batteries,” in Application
of Electroactive Polymers, p.212, Chapman & Hall, Inc.,
London (1993).
[4] D. Fantenx and R. Koksbang, “Rechargeable Lithium Battery
Anodes: Alternatives to Metallic Lithium,” J. Appl.
Electrochem., 23, 1 (1993).
[5] M. S. Whittingham, in “Intercalation Chemistry,” M. S.
Whittingham and J. Gacobson, Editors, Academic Press
(1982).
[6] T. A. Hewston and B. L. Chamberland, J. Phys. Chem. Solids,
48, 97 (1987).
[7] J. B. Goodenough, A. Manthiram and B. Wnetrzewski,
“Electrodes for Lithium Batteries,” J. Power Sources, 43-
44, 269 (1993).
[8] G. T. K. Fey, W. Li and J. R. Dahn, “LiNiVO4: A 4.8 Volt.
Electrode Material for Lithium Cells,” J. Electrochem.
Soc., 141, 2279 (1994).
[9] R. Yazami, K. Zaghib and M. Deschamps, “Carbon Fibers and
Natural Graphite as Negative Electrodes for Lithium Ion-
Type Batteries,” J. Power Sources, 52, 55 (1994).
[10] R. Fong, U. von Sacken and J. R. Dahn, “Studies of
Lithium Intercalation into Carbons Using Non-aqueous
Electrochemical Cells,” J. Electrochem. Soc., 137, 2009
(1990).
[11] H. X. Yang, X. P. Ai, M. Lei and S. X. Li, “Studies of
Carbon as Negative Electrode Materials for Secondary
Lithium Batteries,” J. Power Sources, 43-44, 399 (1993).
[12] J. R. Dahn, R. Fong and M. J. Spoon, “Suppression of
Staging in Lithium —Intercalation Carbon by Disorder in
the Host,” Phys. Rev. B, 42, 6424 (1990)
[13] J. M. Chen, C. Y. Yao, C. H. Cheng, W. M. Hurng and T. H.
Kao, “Cokes as Negative Electrodes in Secondary
Batteries,” J. Power Sources, 54, 494 (1995).
[14] B. M. Way and J. R. Dahn, “The Effect of Boron
Substitution in Carbon on the Intercalation of Lithium in
Lix(BzC1-z)6,” J. Electrochem. Soc., 141, 907 (1994).
[15] D. Guyomard and J. M. Tarascon, “High Voltage Stable
Liquid Electrolyte for Li1+xMn2O4/Cabon Rocking-Chair
Batteries,” J. Power Sources, 54, 92 (1995).
[16] M. A. Ratner and D.F. Shriver, “Ion Transport in Solvent-
Free Polymer,” Chem. Rev., 88, 109 (1988).
[18] T. Nagaura and K. Tozawa, “Lithium Ion Rechargeable
Battery,” Progress in Batteries and Solar Cells, 9, 209
(1990).
[19] J. M. Tarascon and D. Guyomard, “Li Metal-Free
Rechargeable Batteries Based on Li1+xMn2O4 Cathode
(02864 (1991).
[20] J. R. Dahn, U. von Sacken, M. W. Juzkow and H. Al-Janaby,
“Rechargeable LiNiO2/Carbon Cells,” J. Electrochem.
Soc., 138, 2207 (1991).
[21] D. Guyomard and J. M. Tarascon, “Li Metal-Free
Rechargeable LiMn2O4/Carbon Cells : Their Understanding
and Optimization,” J. Electrochem. Soc., 139, 937 (1992).
[22] D. Wickham and W. Croft, J. Phys. Chem. Solids, 7, 351
(1985).
[23] J. Hunter, J. Solid State Chem., 39, 142 (1981).
[24] M. M. Thackeray, P. Johnson, L. de Picciotto, P. Bruce and
J. Goodenough, Mater. Res. Bull., 19, 179 (1984).
[25] M. M. Thackeray, L. de Picciotto, A. de Kock, P. Johnson,
V. Nicholas and K. Adendroff, J. Power Sources, 21, 1
(1987).
[26] T. Ohzuku, H. Fukuda and T. Hirai, “Similarities and
Differences in Electrochemical Character of Layered and
Spinel-Relation Manganese Oxide,” Chem. Express, 2, 543
(1987).
[27] T. Ohzuku, M. Kitagawa and T. Hirai, “Electrochemistry of
Manganese Dioxide in Lithium Non-aqueous Cell,” J.
Electrochem. Soc., 137, 769 (1990).
[28] P. Barboux, F. Shokooki and J. M. Tarascon, US Patent
No. 5 135 732 (1992).
[29] P. Barboux, F. Shokooki and J. M. Tarascon, US Patent
No. 5 211 933 (1993).
[30] D. Guyomard and J. M. Tarascon, US Patent No. 5 192 629
(1993).
[31] S. Bach, M. Henry, N. Baffier and J. Livage, “Sol-Gel
Synthesis of Manganese Oxides,” J. Solid State Chem., 88,
325 (1990).
[32] M. Yoshio, S. Inoue and H. Nakamura, Jpn. Electrochem.
Soc., 58, 477 (1990).
[33] M. Yoshio, S. Inoue, M. Hyakatake, G. Piao and H.
Nakamura, J. Power Sources, 34, 147 (1991).
[34] J. M. Tarascon, E. Wang, F. K. Shokooki, W. R. McKinnon
and S. Colson, “The Spinel Phase of LiMn2O4 as a Cathode
in Secondary Lithium Cells,” J. Electrochem. Soc., 138,
2859 (1991).
[35] P. Barboux, J. M. Tarascon and F. K. Shokoohi, “The Use
of Acetates as Precursors for the Low-Temperature
Synthesis of LiMn2O4 and LiCoO2 Intercalation Compounds,”
J. Solid State Chem., 94, 185 (1991).
[36] M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R.
Bittihn and D. Hoge, “Spinel Electrodes from the Li-Mn-O
System for Rechargeable Lithium Battery Applications,” J.
Electrochem. Soc., 139, 363 (1992)
[37] A. Momchilow, V. Manev and A. Nassalevska, “Rechargeable
Lithium Battery with SpinelRrelated MnO2 II. Optimization
of the LiMn2O4 Synthesis Conditions,” J. Power Sources,
41, 305 (1993).
[38] M. Yoshio, H. Noguchi, T. Miyashita, H. Nakamura and A.
Kozawa, “Three V or 4 V Li-Mn Composite as Cathode in Li
Batteries Prepared by LiNO3 Method as Li source,” J.
Power Sources, 54, 483 (1995).
[39] Y. Xia, H. Hidefumi, H. Noguchi and M. Yoshio, “Studies
on an Li-Mn-O Spinel System (Obtained by Melt-
Impregnation) as a Cathode for 4 V Lithium Batteries Part
Ⅰ. Synthesis and Electrochemical Behavior of LixMn2O4,”
J. Power Sources, 56, 61 (1995).
[40] Y. Xia and M. Yoshio, “Studies on an Li-Mn-O Spinel
System (Obtained by Melt-Impregnation) as a Cathode for 4
V Lithium Batteries PartⅡ. Optimum Spinel from -
MnOOH,” J. Power Sources, 57, 125 (1995).
[41] Y. Xia and M. Yoshio, “Studies on an Li-Mn-O Spinel
System (Obtained by Melt-Impregnation) as a Cathode for 4
V Lithium Batteries PartⅢ. Characterization of Capacity
and Rechargeability,” J. Power Sources, 63, 97 (1996).
[42] Y. Xia and M. Yoshio, “Studies on an Li-Mn-O Spinel
System (Obtained by Melt-Impregnation) as a Cathode for 4
V Lithium Batteries Part Ⅳ. High and Low Temperature
Performance of LiMn2O4,” J. Power Sources, 66, 129 (1997).
[43] R. J. Gummow, A. de Kock and M. M. Thackeray, “Improved
Capacity Retention in Rechargeable 4 V Lithium/Lithium-
Manganese Oxide (Spinel) Cells,” Solid State Ionics, 69,
59 (1994).
[44] V. Manev, A. Momchilov, A. Nassalevska and A. Sato,
“Rechargeable Lithium Battery with Spinel-Related -MnO2
Ⅲ. Scaling-up Problems Associated with LiMn2O4
Synthesis,” J. Power Sources, 54, 323 (1995).
[45] V. Manev, B. Banov, A. Momchilov, A. Nassalevska,
“LiMn2O4 for 4 V Lithium-Ion Batteries,” J. Power
Sources, 57, 99 (1995).
[46] A. Yamada, K. Miura, K. Hinokuma and M. Tanaka,
“Synthesis and Structural Aspects of LiMn2O4 as a
Cathode for Rechargeable Lithium Batteries,” J.
Electrochem. Soc., 142, 2149 (1995).
[47] H. Huang and P. G. Bruce, “3 V and 4 V Lithium Manganese
Oxide Cathodes for Rechargeable Lithium Batteries,” J.
Power Sources, 54, 52 (1995).
[48] P. G. Bruce, A. R. Armstrong and H. Huang, “New and
Optimised Lithium Manganese Oxide Cathodes for
Rechargeable Lithium Batteries,” J. Power Sources, 68, 19
(1997).
[49] Li Guohua, H. Ikuta, T. Uchida and M. Wakihara, “The
Spinel Phases LiMMn2-yO4 (M=Co, Cr, Ni) as the Cathode for
Rechargeable Lithium Batteries,” J. Electrochem. Soc.,
143, 178 (1996).
[50] B. Banov, Y. Todorov, A. Trifonova, A. Momchilv and V.
Manev, “LiMn2-xCoxO4 Cathode with Enhanced
Cycleability,” J. Power Sources, 68, 578 (1997).
[51] M. Wohlfahrt-Mhrens, A. Butz, R. Oesten, G. Arnold, R. P.
Hemmer, R. A. Huggins, “The Influence of Doping on the
Operation of Lithium Manganese Oxide Spinel,” J. Power
Sources, 68, 582 (1997).
[52] A. D. Robertson, S. H. Lu, W. F. Averill and W. F. Howard,
“M3+-Modified LiMn2O4 Spinel Intercalation Cathodes Ⅰ.
Admetal Effects on Morphology and Electrochemical
Performance,” J. Electrochem. Soc., 144, 3500 (1997).
[53] A. D. Robertson, S. H. Lu, W. F. Averill and W. F. Howard,
“M3+-Modified LiMn2O4 Spinel Intercalation Cathodes Ⅱ.
Electrochemical Stabilization by Cr3+,” J. Electrochem.
Soc., 144, 3505 (1997).
[54] Y. Xia and M. Yoshio, “Optimization of Spinel Li1+xMn2-yO4
as a 4 V Li-Cell Cathode in Terms of a Li-Mn-O Phase
Diagram,” J. Electrochem. Soc., 144, 4186 (1997).
[55] P. Arora, R. E. White and M. Doyle, “Capacity Fade
Mechanisms and Side Reactions in Lithium-Ion Batteries,”
J. Electrochem. Soc., 145, 3647 (1998).
[56] Y. Gao and J. R. Dahn, “Correlation Between the Growth of
the 3.3 V Discharge Plateau and Capacity Fading in
Li/1+xMn2-xO4 Materials,” Solid State Ionics, 84, 33
(1996).
[57] D. Guyomard and J .M. Tarascon, Solid State Ionics, 69,
1221 (1993).
[58] A. N. Dey and B. P. Sullivan, “The Electrochemical
Decomposition of Propylene Carbonate on Graphite,” J.
Electrochem. Soc., 117, 222 (1970).
[59] D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai
and H. Yamin, “The Correlation Between the Surface
Chemistry and the Performance of Li-Carbon Intercalation
Anodes for Rechargeable “Rocking-Chair” Type
Batteries,” J. Electrochem. Soc., 141, 603 (1994).
[60] O. Chusid, Y. Ein-Eli and D. Aurbach, “Electrochemical
and Spectroscopic Studies of Carbon Electrodes in Lithium
Battery Electrolyte Systems,” J. Power Sources, 43-44, 47
(1993).
[61] Y. Xia, Y. Zhou and M. Yoshio, “Capacity Fading on
Cycling of 4 V Li/LiMn2O4 Cells,” J. Electrochem. Soc.,
144, 2593 (1997).
[62] A. Blyr, C. Sigala, G. Amatucci, D. Guyomard, Y. Chabre
and J. M. Tarascon, “Self-Discharge of LiMn2O4/C Li-Ion
Cells in Their Discharged State,” J. Electrochem. Soc.,
145, 194 (1998).
[63] D. Aurbach, M. L. Daroux, P. W. Faguy and E. Teager,
“Identification of Surface Films formed on Lithium in
Propylene Carbonate Solutions,” J. Electrochem. Soc.,
134, 1611 (1987).
[64] J. M. Tarascon, F. Coowar, G. G. Amatucci, F. K. Shokoohi
and D. G. Guyomard, “The Li1+xMn2O4/C System Materials
and Electrochemical Aspects,” J. Power Sources, 54, 103
(1995).
[65] X. Q. Yang, X. Sun, S. J. Lee, J. McBreen, S. Mukerjee, M.
L. Daroux and X. K. Xing, “In Situ Synchrontron X-Ray
Diffraction Studies of the Phase Transitions in LixMn2O4
Cathode Materials,” Electrochemical and Solid-State
Letters, 2, 157 (1999).
[66] J. Kim and A. Manthiram, “Low Temperature Synthesis and
Electrode Properties of Li4Mn5O12,” J. Electrochem. Soc.,
145, L53 (1998).
[67] M. A. B. Christopher and A. M. O. Brett,
“Electrochemistry Principles, Methods, And Application,”
Ch. 11, pp224-252, Oxford, New York, NY, (1993).
[68] S. Ahn, “High Capacity, High Rate Lithium-Ion Battery
Electrodes Utilizing Fibrous Conductive Additives,”
Electrochemical and Solid-State Letters, 1, 111 (1998).
[69] A. J. Bard and L. R. Faulkner, “Electrochemical Methods,”
p.700, John Wiley & Sons, Inc., New York, NY, (1980).
[70] M. Bojinov, Y. Geronov, G. Pistoia and M. Pasquali,
“Impedance of the Li Electrode in Li/LixMnO2 Accumulators
at Open-Circuit Voltage,” J. Electrochem. Soc., 140, 294
(1993).
[71] J. Barker, K. West, Y. Saidi, R. Pynenburg, B. Zachau-
Christiansen and R. Koksbang, “Kinetics and
Thermodynamics of the Lithium Insertion Reaction in Spinel
Phase LixMn2O4,” J. Electrochem. Soc., 54, 475 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔