跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊忠諺
研究生(外文):Jung-Yen Yang
論文名稱:含一氧化碳與1,2-雙(二苯基膦)乙烷配位基之鉬亞乙烯化合物的合成與反應
論文名稱(外文):Synthesis and Reactivity of Molybdenum Vinylidene Complexes Containing CO and dppe Ligand
指導教授:林英智林英智引用關係
指導教授(外文):Ying-Chih Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:195
中文關鍵詞:亞乙烯化合物炔基化合物脫氫反應碳-碳偶鍵生成12-雙(二苯基膦)乙烷配位基
外文關鍵詞:vinylidene complexesacetylide complexesdeprotonationcarbon-carbon bond formationdppe Ligand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
化合物 Cp(CO)3WC≡CPh (1a) 與三甲基膦反應可得到單取代鎢炔基化合物 Cp(PMe3)(CO)2WC≡CPh (1c)。 雙取代鎢炔基化合物 Cp(PMe3)2(CO)WC≡CPh (1d) 則可由 1a 與2 當量的三甲基膦THF溶液在紫外光照射下得到。 1d可與 ICH2CN和 BrCH2(1-C10H7) 在二氯甲烷中反應而分別產生 [Cp(PMe3)2(CO)W=C=C(Ph)CH2CN]I (2a) 和 [Cp(PMe3)2(CO)W=C=C(Ph)CH2(1-C10H7)]Br (2c)。 1d容易在含有四苯基硼酸鈉的甲醇溶液中在 Cb 的位置酸化成鎢亞乙烯化合物[Cp(PMe3)2(CO)W=C=C(Ph)H]BPh4 (2b)。
Cp(dppe)(CO)MoCl (3d) 和 Cp(dppe)W(CO)Cl (3d') 則可由 [CpMo(CO)2(dppe)]Cl (3b) 和 [CpW(CO)2(dppe)]Cl (3b') 的THF溶液照光得到。 Cp(PPh3)2(CO)MoCl (3e) 和 Cp(dppm)(CO)MoCl (3c) 則可由Cp(CO)3MoCl (3a) 與相對應的膦配位基在甲苯中迴流製備。 將Cp(dppe)(CO)MoCl (3d) 與鈉汞齊反應可得到Cp(dppe)(CO)MoH (4a)。 4a容易在d-chloroform中轉變成 3d。 [Cp(dppe)(CO)Mo(NCCH3)]Cl (4b) 和 [Cp(dppe)(CO)Mo(NCCH2Ph)]Cl (4c) 則可由 3d 與相對應的nitrile配位基在甲醇中迴流製備。 Cp(dppe)(CO)MoN3 (4d) 可由 3d和過量的疊氮化鈉在甲醇中迴流製備。 將 3d與過量的 tert-butylacetylene在甲醇中迴流可得到有機炔以h2方式配位的化合物 [Cp(dppe)Mo(HC≡CBut)]Cl (5a)。 [Cp(dppe)Mo(HC≡CPh)]Cl (5b) 亦可由相同的方法製得。 將 5a的甲醇溶液在 -78℃下以一大氣壓的一氧化碳處理, 可將其轉換成中間體 [Cp(dppe)(CO)Mo=C=C(But)H]Cl (5a'), 5a' 在回溫的過程中會回到5a。 5a' 水解可得到鉬氧二聚物。 將 5b 在室溫下以1大氣壓的一氧化碳處理, 可將其轉換成[Cp(dppe)(CO)Mo=C=C(Ph)H]Cl (5b')。 Cp(dppe)(CO)MoC≡CBut (6a) 和 Cp(dppe)(CO)MoC≡CPh (6b) 可由 5a' 和 5b' 與甲醇鈉反應製得。 將 6a與酸反應會轉變成化合物 5a。 將6b與 BrCH2CN在氯仿中反應可得到鉬亞乙烯化合物Cp(dppe)(CO)Mo=C=C(Ph)CH2CN+ (7a)。 使用同樣的方法可得到高產率的鉬亞乙烯化合物Cp(dppe)(CO)Mo=C=C(Ph)CH2R+ (7b, R = H; 7c, R = CH=CH2; 7d, R = Ph; 7e, R = C6F5; 7f, R = CO2CH2CH3)。
Cp(dppe)MoC(CO2CH3)=C(Ph)CH2CH=CH2 (8a) 和 Cp(dppe)Mo(h3-CHCO2CH3C(Ph)CHPh) (8b), 可由鉬亞乙烯化合物 7c和 7d與甲醇鈉反應製得。
將 7d與過量的疊氮化鈉反應產生相對應的nitrile配位的化合物 [Cp(dppe)(CO)MoNCCH(Ph)CH2Ph]N3 (9d)。
將6b與過量的azidotrimethylsilane在氯仿中反應可得到鉬 tetrazolate化合物 Cp(dppe)(CO)MoN4CCH2Ph (10a)。
將 Cp(PPh3)2RuCN (11a) 與有機鹵化物反應可得到高產率的釕 isonitrile化合物Cp(PPh3)2RuCNCH2R+ (12a, R = CN; 12b, R = CH2CN; 12c, R = CO2CH3; 12d, R = CO2CH2CH3; 12e, R = Ph; 12f, R = CH=CH2)。
[Cp(PPh3)2RuCNCH2CN]Br (12a) 與n-Bu4NOH在丙酮中的脫氫反應可得到釕
****************
oxazole化合物 Cp(PPh3)2RuC=NCH(CN)C(CH3)2O (13a)。

Abstract
Treatment of Cp(CO)3WC≡CPh (1a) with trimethylphosphine affords monosubstituted tungsten acetylide complex Cp(PMe3)(CO)2WC≡CPh (1c). Bi-substituted tungsten acetylide complex Cp(PMe3)2(CO)WC≡CPh (1d) is prepared from UV photolysis of a mixture containing 1a and 2 equivalents of the trimethylphosphine in THF. 1d reacts with ICH2CN and BrCH2(1-C10H7) to afford [Cp(PMe3)2(CO)W=C=C(Ph)CH2CN]I (2a) and [Cp(PMe3)2(CO)W=C=C(Ph)CH2(1-C10H7)]Br (2c), respectively. 1d is readily protonated on Cb to afford a tungsten vinylidene complex [Cp(PMe3)2(CO)W=C=C(Ph)H]BPh4 (2b) in the presence of sodium tetraphenylborate in methanol.
Cp(dppe)(CO)MoCl (3d) and Cp(dppe)W(CO)Cl (3d') were prepared from UV photolysis of [CpMo(CO)2(dppe)]Cl (3b) and [CpW(CO)2(dppe)]Cl (3b') in THF. Cp(PPh3)2(CO)MoCl (3e) and Cp(dppm)(CO)MoCl (3c) were prepared from a mixture of Cp(CO)3MoCl (3a) and the corresponding phosphine ligands in boiling toluene. Reduction of Cp(dppe)(CO)MoCl (3d) by sodium amalgam affords Cp(dppe)(CO)MoH (4a). 4a is readily changed to 3d in d-chloroform. [Cp(dppe)(CO)Mo(NCCH3)]Cl (4b) and [Cp(dppe)(CO)Mo(NCCH2Ph)]Cl (4c) were prepared from a mixture of 3d and corresponding nitrile in methanol under reflux. The azido molybdenum complex Cp(dppe)(CO)MoN3 (4d) can be prepared from a mixture of 3d and excess sodium azide in methanol at refluxing temperature. Treatment of a suspension of 3d with excess tert-butylacetylene in methanol under reflux affords a h2-alkyne complex [Cp(dppe)Mo(HC≡CBut)]Cl (5a). [Cp(dppe)Mo(HC≡CPh)]Cl (5b) was also prepared by using the same preparative method. Treatment of a methanol solution of 5a with 1 atm of CO at -78℃, transforms it into [Cp(dppe)(CO)Mo=C=C(But)H]Cl (5a') as an intermediate, 5a' decarbonylates with tautomerization of the vinylidene ligand to give back the h2-alkyne complex 5a on warming to room temperature. Hydrolysis of 5a' affords a molybdenum oxo dimer linked by hydroxy ligands. Treatment of a methanol solution of 5b with 1 atm of CO at room temperature affords a molybdenum vinylidene complex with a proton on Cb [Cp(dppe)(CO)Mo=C=C(Ph)H]Cl (5b'). Cp(dppe)(CO)MoC≡CBut (6a) and Cp(dppe)(CO)MoC≡CPh (6b) were prepared from a mixture of 5a' and 5b' in the presence of sodium methoxide. Protonation of 6a decarbonylates with vinylidene tautomerization to give back the h2-alkyne complex 5a. Treatment of 6b with BrCH2CN in chloroform affords a cationic molybdenum vinylidene complex Cp(dppe)(CO)Mo=C=C(Ph)CH2CN+ (7a). Similarly, preparations of complexes Cp(dppe)(CO)Mo=C=C(Ph)CH2R+ (7b, R = H; 7c, R = CH=CH2; 7d, R = Ph; 7e, R = C6F5; 7f, R = CO2CH2CH3) have all been achieved with good yields.
Cp(dppe)MoC(CO2CH3)=C(Ph)CH2CH=CH2 (8a) and Cp(dppe)Mo(h3-CHCO2CH3C(Ph)CHPh) (8b), were isolated by treatment of the cationic molybdenum vinylidene complexes 7c and 7d with sodium methoxide in methanol.
Treatment of 7d with excess sodium azide affords the corresponding nitrile coordinated complex [Cp(dppe)(CO)MoNCCH(Ph)CH2Ph]N3 (9d).
Treatment of 6b with excess azidotrimethylsilane in chloroform at room temperature to afford the molybdenum tetrazolate complex Cp(dppe)(CO)MoN4CCH2Ph (10a).
Treatment of ruthenium cyanide complex Cp(PPh3)2RuCN (11a) with alkyl or aryl halides affords cationic ruthenium isonitrile complexes Cp(PPh3)2Ru=C=NCH2R+ (12a, R = CN; 12b, R = CH2CN; 12c, R = CO2CH3; 12d, R = CO2CH2CH3; 12e, R = Ph; 12f, R = CH=CH2) with good yields.
Deprotonation of cationic ruthenium isonitrile complex [Cp(PPh3)2RuCNCH2CN]Br (12a) by n-Bu4NOH in acetone affords the ruthenium
***************
oxazole complex Cp(PPh3)2RuC=NCH(CN)C(CH3)2O (13a).

Abstract----------------------------------------------------------------------------------------XIV
Chapter 1. Introduction-------------------------------------------------------------------------1
1-1. Transition Metal Vinylidene Complexes------------------------------------------------1
1-2. Preparative Methods for Mononuclear Vinylidene Complexes----------------------1
1-3. Reactivity of Vinylidene Complexes-----------------------------------------------------6
1-4. Goal and Experimental Design of This Thesis----------------------------------------13
Chapter 2. Synthesis of Tungsten Acetylide Complexes Containing Trimethylphosphine Ligand-----------------------------------------------15
2-1. Synthesis of Tungsten Acetylide Complexes------------------------------------------15
2-2. Synthesis of Tungsten Vinylidene Complexes----------------------------------------22
2-3. Spectroscopic Analysis and Molecular Structures for the Tungsten Vinylidene Complexes---------------------------------------------------------------------------------23
2-4. Solvent Effect------------------------------------------------------------------------------27
2-5. Conclusion----------------------------------------------------------------------------------28
Chapter 3. Synthesis of Molybdenum Acetylide and Vinylidene Complexes---------30
3-1. Synthesis of Cp(Diphos)(CO)MCl------------------------------------------------------30
3-2. Mechanism for the Formation of the Di-substituted Derivatives of the Type of Cp(Diphos)(CO)MCl by Photolysis---------------------------------------------------31
3-3. Reactivity of Cp(dppe)(CO)MoCl (3d)-------------------------------------------------32
3-3-1. Reduction of Cp(dppe)(CO)MoCl (3d) by Sodium Amalgam-------------------32
3-3-2. Reactions of Cp(dppe)(CO)MoCl (3d) with Nitriles in Methanol---------------35
3-3-3. Reaction of Cp(dppe)(CO)MoCl (3d) with Sodium Azide in Methanol--------37
3-4. Synthesis of Molybdenum Acetylide Complexes-------------------------------------38
3-5. Synthesis of Molybdenum Vinylidene Complexes-----------------------------------52
3-6. Solvent Effect and Organic Reagents Property for the Synthesis of the Molybdenum Vinylidene Complexes--------------------------------------------------53
3-7. Spectroscopic Analysis and Molecular Structures for the Molybdenum Vinylidene Complexes-------------------------------------------------------------------54
3-8. Determination of the Relative Position of the Nonequivalent Phosphorous Atoms of DPPE Ligand of Cp(dppe)(CO)MoC≡CPh (6b)----------------------------------55
3-9. Decoupling Experiments of the Cationic Molybdenum Vinylidene Complex [Cp(dppe)(CO)Mo=C=C(Ph)CH2CH=CH2]Br (7c)---------------------------------62
3-10. Conclusion--------------------------------------------------------------------------------64
Chapter 4. Carbon-Carbon Coupling Reaction of the Molybdenum Vinylidene Complexes------------------------------------------------------------------------67
4-1. Reaction of [Cp(dppe)(CO)Mo=C=C(Ph)CH2CH=CH2]Br (7c) with Sodium Methoxide in Methanol------------------------------------------------------------------69
4-2. Structural Characterization of Cp(dppe)MoC(CO2CH3)=C(Ph)CH2CH=CH2 (8a)--------------------------------------------------------------------------------------------------70
4-3. Mechanism for the Formation of the h2-Olefinic Molybdenum Complex--------80
4-4. Reaction of [Cp(dppe)(CO)Mo=C=C(Ph)CH2Ph]Br (7d) with Sodium Methoxide in Methanol--------------------------------------------------------------------------------84
4-5. Structural Characterization of Cp(dppe)Mo(*3-CHCO2CH3C(Ph)CHPh) (8b)---85
4-6. Mechanism for the Formation of the h3-Allylic Molybdenum Complex----------91
4-7. Comparison of the h2-Olefinic Molybdenum Complex and the h3-Allylic Molybdenum Complex------------------------------------------------------------------92
4-8. Reaction of [Cp(dppe)(CO)Mo=C=C(Ph)CH2CN]Br (7a) with Sodium Methoxide in Methanol------------------------------------------------------------------93
4-9. Conclusion----------------------------------------------------------------------------------94
Chapter 5. Synthesis of the Molybdenum Nitrile Complexes---------------------------96
5-1. Synthesis of Molybdenum Nitrile Complexes-----------------------------------------96
5-2. Spectroscopic Analysis and Molecular Structures for the Molybdenum Nitrile Complexes---------------------------------------------------------------------------------99
5-3. Mechanism for the Formation of the Molybdenum Nitrile Complexes----------101
5-4. Synthesis of the Molybdenum Tetrazolate Complex--------------------------------102
5-5. Mechanism for the Formation of the Molybdenum Tetrazolate Complex-------103
5-6. Spectroscopic Analysis and Molecular Structures for the Molybdenum Tetrazolate Complex--------------------------------------------------------------------105
5-7. Synthesis of the Molybdenum Ketenimine Complexes-----------------------------108
5-8. Synthesis of Ruthenium Isonitrile Complexes---------------------------------------111
5-9. Spectroscopic Analysis and Molecular Structures for the Ruthenium Isonitrile Complexes-------------------------------------------------------------------------------114
5-10. Solvent Effect and Organic Reagents Property for the Synthesis of the Ruthenium Isonitrile Complexes --------------------------------------------------116
5-11. Synthesis of Ruthenium Oxazole Complexes--------------------------------------117
5-12. Spectroscopic Analysis and Molecular Structures for the Ruthenium Oxazole Complexes-----------------------------------------------------------------------------119
5-13. Mechanism for the Formation of the Ruthenium Oxazole Complexes---------121
5-14. Conclusion-------------------------------------------------------------------------------122
Chapter 6. Experimental Section-----------------------------------------------------------124
6-1. General Procedures and Materials-----------------------------------------------------124
6-2. Reactions----------------------------------------------------------------------------------125
References--------------------------------------------------------------------------------------167
Appendix ORTEP Drawings and Crystal Data for Compounds---------------------173

1. (a) Bruce, M. I. Chem. Rev. 1991, 91, 197. (b) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59. (c) Davies, S. G.; McNally, J. P.; Smallridge, A. J. Adv. Organomet. Chem. 1990, 30, 1.
2. Nickias, P. N.; Selegue, J. P.; Young, B. A. Organometallics 1988, 7, 2248.
3. (a) Werner, H.; Angew. Chem., Int. Ed. Engl. 1990, 29, 1077. (b) Werner, H.; Rappert, T.; Wolf, J. Isr. J. Chem. 1990, 30, 377. (c) Werner, H.; Hohn, A.; Schulz, M. J. Chem. Soc., Dolton Trans. 1991, 777. (d) Schafer, M.; Wolf, J.; Werner, H. J. Chem. Soc. Chem. Commun. 1991, 1341. (e) Schneider, D.; Werner, H. Angew. Chem. 1991, 103, 710. (f) Werner, H.; Dirnberger, T.; Hohn, A.; Chem. Ber. 1991, 124, 1957. (g) Werner, H.; Weinhand, R.; Knaup, W. Organometallics 1991, 10, 3967. (h) Rappert, T. O.; Mahr, N.; Wolf, J.; Werner, H. Organometallics 1992, 11, 4156. (i) Nakanishi, S.; Goda, K.; Uchiyama, S.; Otsuji, Y. Bull. Chem. Soc. Jpn. 1992, 65, 2560. (j) Haquette, P.; Pirio, N.; Touchard, D.; Toupet, L.; Dixneuf, P. H. J. Chem. Soc. Chem. Commun. 1993, 163. (k) Watatsuki, Y.; Koga, N.; Yamazaki, H.; Morokuma, K. J. Am. Chem. Soc. 1994, 116, 8105.
4. Baker, P. K.; Barker, G. K.; Green, M.; Welch, A. J. J. Am. Chem. Soc. 1980, 102, 7811.
5. Gill, D. S.; Green, M. J. Chem. Soc. Chem. Commun. 1981, 1037.
6. (a) Boland, B. E.; Fam, S. A.; Hughes, R. P. J. Organomet. Chem. 1979, 172, C29. (b) Boland, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Organometallics 1982, 1, 628.
7. van Asselt, A.; Burger, B. J. Gibson, V. C.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 5347.
8. Schubert, U.; Kirschgassner, U.; Gr"nen, J.; Piana, H. Polyhedron 1989, 8, 1589.
9. Schubert, U.; Gr"nen, J. Chem. Ber. 1989, 122, 1237.
10. L"we, C.; Hund, H. -U.; Berke, H. J. Organomet. Chem. 1989, 371, 311.
11. H"hn, A.; Otto, H.; Dziallas, M.; Werner, H. J. Chem. Soc. Chem. Commun. 1987, 852.
12. Consiglio, G.; Schwab, R.; Morandini, F. J. Chem. Soc. Chem. Commun. 1988, 25.
13. (a) Kostic, N. M.; Fenske, R. F. Organometallics 1982, 1, 974. (b) Werner, H.; Wolf, J.; Muller, G.; Kr*ger, C. Angew. Chem., Int. Ed. Engl. 1984, 28, 431.
14. (a) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Valero, C. Organometallics 1993, 12, 663. (b) Werner, H.; Meyer, U.; Esteruelas, M. A.; Sola, E.; Oro, L. A.; Valero, C. J. Organomet. Chem. 1989, 366, 187. (c) Andriollo, A.; Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez-Delgardo, R. A.; Sola, E.; Velcro, C.; Werner, H. J. Am. Chem. Soc. 1989, 111, 7431. (d) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. J. Am. Chem. Soc. 1993, 115, 4683.
15. Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1980, 102, 2455.
16. Berke, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1980, 35B, 86.
17. Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1978, 100, 7763.
18. Gill, D. S.; Green, M. J. Chem. Soc. Chem. Commun. 1981, 1037.
19. Roper, W. R.; Waters, J. M.; Wright, L. J.; van Meurs, F. J. Organomet. Chem. 1980, 201, C27.
20. Bruce, M. I.; Swincer, A. G. Aust. J. Chem. 1980, 33, 1471.
21. (a) Ting. P. C.; Lin. Y. C.; Cheng. M. C.; Wang. Y. Organometallics 1994, 13, 2150. (b) Ting. P. C.; Lin. Y. C.; Lee. G. H.; Cheng. M. C.; Wang. Y. J. Am. Chem. Soc. 1996, 118, 6433.
22. Lo. Y. H.; Lin. Y. C.; Lee. G. H.; Wang. Y. Organometallics 1999, 18, 982.
23. Chang, C. W.; Ting. P. C.; Lin. Y. C.; Lee. G. H.; Wang. Y. J. Organomet. Chem. 1998, 553, 417.
24. Chang, K. H.; Lin. Y. C. J. Chem. Soc. Chem. Commun. 1998, 1441.
25. Bruce, M. I.; Humphrey, M. G.; Mattisons, J. G.; Roy, S. K.; Swincer, A. G. Aust. J. Chem. 1984, 37, 1955.
26. Ustynyuk, N. A.; Vinogradova, V. N.; Komeva, V. N.; Kravtsov, D. N.; Andrianov, V. G.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 277, 285.
27. Haines, R. J.; Nyholm, R. S.; Stiddard, M. H. B. J. Chem. Soc. (A). 1967, 94.
28. (a) Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C. Inorg. Chem. 1983, 22, 2903. (b) Chisholm, M. H.; Huffman, J. C.; Marchant, N. S. J. Am. Chem. Soc. 1983, 105, 6162.
29. Kolobova, N. E.; Skripkin, V. V.; Rozantseva, T. V.; Struchkov, Yu. T.; Aleksandrov, G. G.; Andrianov, V. G. J. Organomet. Chem. 1981, 218, 351.
30. (a) Bruce, M. I.; Hambley, T. W.; Rodgers, J. R.; Snow, M. R.; Swincer, A. G. J. Organomet. Chem. 1982, 226, C1. (b) Levisalles, J.; Rudler, H.; Jeannin, Y.; Dahan, F. J. Organomet. Chem. 1979, 178, C8.
31. St*rker, K.; Curtis, M. D. Inorg. Chem. 1985, 24, 3006.
32. Kegley, S. E.; Bergstrom, D. T.; Crocker, L. S.; Weiss, E. P.; Berndt, W. G.; Rheingold, A. L. Organometallics 1991, 10, 567.
33. Green, M. L. H.; Lindsell, W. E. J. Chem. Soc. (A). 1967, 686.
34. Alt, H. G.; Engelhardt, H. E.; Klaeui, W.; Mueller, A. J. Organomet. Chem. 1987, 331, 317.
35. (a) Bainbridge, A.; Craig, P. J.; Green, M. J. Chem. Soc. (A), 1968, 2715. (b) Faller, J. W.; Anderson, A. S. J. Am. Chem. Soc. 1970, 5852. (c) Beach, D. L.; Barnett, K. W. J. Organomet. Chem. 1975, 97, C27. (d) Sakaba, H.; Ishida, K.; Horino, H. Chem. Lett. 1995, 1145.
36. (a) Nakazawa, H.; Kadoi, Y.; Mizuta, T.; Miyoshi, K.; Yoneda, H. J. Organomet. Chem.; Engl. 1989, 366, 333. (b) Gibson, D. H.; Ong, T. S.; Ye, M.; Franco, J. O.; Owens, K. Organometallics 1988, 7, 2569. (c) Busetto, LL.; Zanotti, V.; Norfo, L.; Palazzi, A.; Albano, V. G.; Braga, D. Organometallics 1993, 12, 190. (d) Nakazawa, H.; Yamaguchi, M.; Kubo, K.; Miyoshi, K. J. Organomet. Chem. 1992, 428, 145. (e) Werner, H.; Hofmann, L.; Zolk, R. Chem. Ber. 1987, 120, 379. (f) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics 1984, 3, 879. (g) Carlos, F.; Barrientos-Penna, A.; Hugo, K. O.; Derek, S. Organometallics 1985, 4, 367. (h) Bao, Q. B.; Rheingold, A. L.; Brill, T. B. Organometallics 1986, 5, 2259.
37. Sweet, J. R.; Graham, W. A. G. J. Am. Chem. Soc. 1982, 104, 2811.
38. (a) Tom, W.; Wong, W. -K.; Gladysz, J. A. J. Am. Chem. Soc. 1979, 101, 1589. (b) Tom, W.; Lin, G. -Y.; Wong, W. -K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.
39. Casey, C. P.; Andrews, M. A.; Rinz, J. E. J. Am. Chem. Soc. 1979, 101, 741.
40. Angelici, R. J. Acc. Chem. Res. 1972, 5, 535.
41. Fischer, E. O.; Massb"l, A. Angew. Chem., Int. Ed. Engl. 1964, 3, 580.
42. Verkade, J. G. Coord. Chem. Rev. 1972, 9, 1.
43. (a) Wiedemann, R.; Steinert, P.; Gevert, O.; Werner, H. J. Am. Chem. Soc. 1996, 118, 2495. (b) Braun, T.; Meuer, P.; Werner, H. Organometallics 1996, 15, 4075.
44. (a) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Bottrill, M.; Green, M.; Orpen. A. G.; Williams, I. D.; Weich, A. J. J. Chem. Soc. Dalton Trans. 1983, 927. (b) Clegg, W.; Green, M.; Hall, C. A.; Hockless, D. C. R.; Norman, N. C.; Woolhouse, C. M. J. Chem. Soc. Chem. Commun. 1990, 1330. (c) Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.; Orpen, A. G. J. Chem. Soc. Dalton Trans. 1991, 3021.
45. Riera, V.; Ruiz, M. A.; Villafane, F.; Bois, C.; Jeannin, Y. J. Organomet. Chem. 1990, 382, 407.
46. Sumitomo Chemical Co. Ltd. Kano Eiichi, Jpn Kokai Tokyo Koho JP 60, 130, 572 [85, 130, 572] Chem. Abstr. 1986, 104, 88553g.
47. (a) Curran, W. V.; Tomcufcik, A. S.; Ross, A. S. U. S. Pat. 4036849 (1977) Chem. Abstr. 1977, 87, 117876. (b) Scanlon, W. B.; Garbrecht, W. L. S. Afr. Pat. 6804307 (1970) Chem. Abstr. 1970, 73, 56100.
48. Malatesta, L. and Bonati, F. Isonitrile Complexes of Metals, J. Wiley, Lodon, 1969; Treichel, P. M. Adv. Organomet. Chem., 1973, 11, 21
49. (a) Abbott, S.; Davies, S. G. and Warner, P. J. Organomet. Chem. 1983, 246, C65. (b) Bruce, M. I. And Wallis, R. C. Aust. J. Chem., 1981, 34, 209. (c) Steinmetz, A. L. and Johnson, B. V. Synth. React. Inorg. Met-Org. Chem., 1983, 13, 367.
50. Baird, G. J. and Davies, S. G. J. Organomet. Chem. 1984, 262, 215.
51. (a) Padwa, A.; Woolhouse, A. D. In Comprehensive Heterocyclic Chemistry; Lowowski, W., Ed.; Pergamon Press: New York, 1984; Vol. 7, Chapter 5, p 47. (b) Nair, V. In Heterocyclic compounds; Hassner, A., Ed.; John Wiley and Sons: New York, 1983; Vol. 42.1, Chapter 2, pp 215.
52. (a) Anderson, D. J.; Hassner, A. Synthesis 1975, 483. (b) Hassner, A. Heterocycles 1980, 14, 1517.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top