(3.238.7.202) 您好!臺灣時間:2021/03/03 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林秀玲
研究生(外文):Hsiu-Ling Lin
論文名稱:Franck-Condon因子的全始計算對氯乙烯電子-振動態之研究
論文名稱(外文):Vibronic spectra of vinyl chloride by ab initio calculation of the Franck-Condon Factors
指導教授:林聖賢林聖賢引用關係
指導教授(外文):Sheng-Hsien Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:43
中文關鍵詞:Franck-Condon 因子電子-振動光譜氯乙烯全始計算躍遷能量
外文關鍵詞:Franck-Condon factorsvibronic spectravinyl chlorideab initio calculationexcitation energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用Franck-Condon 因子對氯乙烯做電子-振動光譜的全始計算 ( ab initio calculation )。此計算方法為對氯乙烯中的氫原子使用 6-31G** 基底 ( basis set ) 以及碳原子和氯原子使用 6-31++G** 基底,求得氯乙烯在 CASSCF ( complete active space SCF ) 方法上的能量最佳化。接著更進一步求得氯乙烯在 MRCI ( multireference configuration interaction ) 方法上電子躍遷能量以及激發態與基態的能階差並且比較使用6-31++G** 基底和 VTZ 基底所得結果之差異。最後,利用所得之基態和激發態的振動頻率來計算其 Franck-Condon 因子,以求得氯乙烯之理論電子-振動光譜,並將此理論結果和實驗相比對,便可標定實驗的電子-振動光譜譜線。

The vibronic spectra of vinyl chloride have been studied using ab initio molecular orbital methods. Geometries of the singlet excited electronic states have been optimized at the CASSCF levels of theory with the 6-31G** basis set for H and 6-31++G** basis set for C and Cl ( chlorine ). Vertical and adiabatic excitation energies are calculated by the multireference configuration interaction (MRCI) method. Vibrational frequencies and normal coordinates for the ground and excited states are used for the calculations of vibrational overlap integrals and Franck-Condon factors, taking into account distortion, displacement, and normal mode mixing. Major features of the observed absorption spectrum of vinyl chloride have been interpreted on the basis of the computed Franck-Condon factors. The role of each electronic state in the spectra has been clarified; the n - sigma* transition corresponds to the distinct peaks in the 56700-59700 cm-1 energy region, the less intensive distinct bands in the interval of 59700-62500 cm-1 due to the n - pi* states. The theoretical vibronic spectrum is in qualitative agreement with the experimental one, except of some details. Possible reasons for the discrepancies between theory and experiment are also discussed.

中文摘要 1
Abstract 2
I. INTRODUCTION 3
II. THEORY 5
A. Ab initio MO calculations 5
B. Calculation of Franck-Condon factors 6
III. RESULTS AND DISCUSSION 9
A. Excitation energies and geometries of the excited states 9
B. Vibrational frequencies and normal coordinates 12
C. Franck-Condon factor and vibronic spectra 14
IV. CONCLUSION 39
V. REFERENCES 41
VI. ACKNOWLEDGEMENTS 43

V. REFERENCES
(1) K. H. Sze, C. E. Brion, A. Katrib, and B. EL-Issa, Chem. Phys. 137, 369 (1989).
(2) A. D. Walsh, Trans. Faraday Soc. 41, 35 (1945).
(3) S.P. Stood, and K. Watanabe, J. Chem.Phys. 45, 2913 (1966).
(4) M. J. Berry, J. Chem. Phys. 61, 3114 (1974).
(5) M. Umemoto, K. Seki, H. Shinohara, U. Nagashima, N. Nishi, M. Kinoshita, and R. Shimada, J. Chem. Phys, 83, 1657 (1985).
(6) W. Radloff, T. Freudenberg, H.-H. Ritze, V. Stert, K. Weyers, and F. Noack, Chem. Phys. Lett. 245, 400 (1995).
(7) P. Farmanara, V. Stert, and W. Radloff, Chem. Physs. Lett. 288, 518 (1998).
(8) P.T.A. Reilly, Y. Xie, and R. J. Gordon, Chem. Phys. Lett. 178, 511 (1991).
(9) Y. Mo, K. Tonokura, Y. Matsumi, M. Kawasaki, T. Sato, T. Arikawa, P.T.A. Reilly, Y. Xie, Y. Yang, Y. Huang, and R. J. Gordon, J. Chem. Phys. 97, 4815 (1992).
(10) Y. Huang, G. He, and R. J. Gordon, Chem. Phys. Lett. 229, 621 (1994).
(11) M. J. Rossi and H. Hlem, J. Chem. Phys. 87, 902 (1987).
(12) D. Kivelson, E. B. Wilson, and D. R. Lide, J. Chem. Phys. 32, 205 (1960).
(13) G. Herzberg, Molecular Spectra and Molecular Structure. III Electronic spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1967.
(14) R. Locht, B. Leyh, K. Hottmann, and H. Baumgartel, Chem. Phys. 220, 217 (1997).
(15) T. Suzuki , K. Tonokura, L. S. Bontuyan, and N. Hashimoto, J. Phys. Chem. 98, 13447 (1994).
(16) Y. Huang, Y. Yang, G. He, and R. J. Gordon, J. Chem. Phys. 99, 2752 (1993)
(17) M. G. Moss, M. D. Ensminger, and J. D. McDonald, J. Chem. Phys. 74, 6631 (1981).
(18) T. Fujimoto, A. M. Rennert, and M. H. J. Wijnen, Ber. Bunsenges, Phys. Chem. 74, 282 (1970).
(19) (a)R. Ausubel and M. H. J. Wijnen, Int. J. Chem. Kinet. 7, 739 (1975).
(b) R. Ausubel and M. H. J. Wijnen, J. Photochem. 4, 241 (1975).
(c) R. Ausubel and M. H. J. Wijnen, J. Photochem. 5, 233 (1976).
(d) R. Ausubel and M. H. J. Wijnen, Z. Phys. Chem. 100, 175 (1976).
(20) M. J. Molina and G. C. Pimentel, J. Phys. Chem. 56, 2988(1972).
(21) K. H. Sze, C. E. Brion, A. Katrib, and B. EL-Issa, Chem. Phys. 132, 271 (1989).
(22) K. Tonokura, L. B. Daniels, T. Suzuki , and K. Yamashita, J. Phys. Chem. A 101, 7754 (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔