跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡枝松
研究生(外文):Tsai Chih-Song
論文名稱:半導體氫化表面之表面振動動力學
論文名稱(外文):Surface vibrational dynamics at hydrogenated semiconductor surfaces
指導教授:林敬二林敬二引用關係
指導教授(外文):Ching-Erh Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:165
中文關鍵詞:紅外線吸收光譜技術表面拉曼散射振動能量鬆弛振動去相位半導體氫化表面單式去相位模型晶體聲子投射於表面之頻譜良序 Ge(111)
外文關鍵詞:infrared absorption spectroscopysurface Raman scatteringvibrational energy relaxationvibrational dephasinghydrogenated semiconductor surfacessingle-mode dephasing modelprojected bulk phonon spectrumwell-ordered Ge(111)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文敘述利用紅外線吸收光譜(IR absorption)及表面拉曼散射(surface Raman scattering)技術來研究半導體氫化表面的表面振動動力學。經由分析光譜中的 XH/D (X=C, Si, 及 Ge) 在不同溫度下伸展振動(stretching)譜帶形狀的變化關係,研究其振動能階的能量鬆弛(energy relaxation)及去相位(dephasing)的動力學。所測定得的鑽石表面CD振動能緩解時間約為 ~3x10^-13 秒,此為所有半導體和絕緣體表面之吸附分子系統中最短者。此超快能量鬆弛速率,源自於強烈的聲子-聲子間耦合機制及其在鑽石表面的能量鬆弛過程為雙聲子(two-phonon)釋放程序。拉曼光譜技術被應用於單晶矽及鍺氫化表面的測量, 以研究其振動去相位動力學。我們利用單式去相位模型(single-mode dephasing model)分析振動光譜的頻率移動及其線寬變化,獲得交換頻率(exchange-mode frequencies)及其耦合強度(coupling strength)。我們經由比較在矽 (100) 氫化表面的頻率及時間域上的實驗結果,而推論出多式去相位模型(multi-mode dephasing model)可以解釋兩者間之歧異。並且我們發現在 X(100) 面的XH伸展振動頻率的交換頻率與彎曲振動(bending)頻率相吻合。另一方面,X(111) 氫化表面的交換頻率則位於晶體聲子投射於表面之頻譜(projected bulk phonon spectrum)中。此種去相位交換頻率與表面結構之相依性發現與晶格表面結構鬆弛(structure relaxation)及其對應之對稱性變化有關聯。此結果也由半導體氘化表面實驗結果進一步確認。根據吸附分子表面的對稱性,我們得以分析出其在表面聲子光譜中的交換頻率。並且利用高靈敏的拉曼光譜技術, 我們得以分析由濺射(sputtering)及退火(annealing)所製備的良序(well-ordered) Ge(111) 氫化表面的特性。
The vibrational dynamics at hydrogenated semiconductor surfaces is investigated by infrared absorption spectroscopy and surface Raman scattering. The temperature dependence of the spectral profiles has been analyzed to reveal vibrational energy relaxation and dephasing dynamics of XH/D (X = C, Si, and Ge) stretchings on diamond, silicon and germanium surfaces. The energy relaxation time of CD stretching on diamond surface was determined to be ~3x10^-13 second. This is the shortest among all of the semiconductor and insulator surfaces. This ultrafast decay rate is originated from the two-phonon emission process during the relaxation as well as the strong phonon-phonon coupling mechanism in diamond. Raman scattering has been performed on single crystal hydrogenated silicon and germanium surfaces to investigate their vibrational dephasing dynamics. Based on the single-mode dephasing model, the frequency shift and line broadening were analyzed to extract exchange mode frequencies and coupling strengths. The comparison between the frequency- and time-domain results on hydrogenated Si(100) surfaces led us to propose a multi-mode dephasing model to rationalize its inconsistency. Furthermore, the exchange mode of the XH stretching on X(100) surfaces was found to match with its bending frequency. The corresponding ones for X(111) surfaces, on the other hand, are located within the projected bulk phonon spectrum. This surface dependence of the exchange mode in surface vibrational dephasing dynamics was found to correlate with the structural relaxation and its associated symmetry variation at surfaces. Its has been further confirmed by the experiments performed on deuterated semiconductor surfaces. We have identified the exchange modes in the surface phonon spectra according to their symmetry properties. With high-sensitivity Raman spectroscopy, we also characterized a well-ordered hydrogenated Ge(111) surface prepared by sputtering and annealing.
COVER
Abstract
Acknowledgment
Table of contents
List of Figures
List of Tables
Chapter I Introduction
References
Chapter 2 Surfaces of semiconductors
2.1 Atomic structure of surfaces
2.1.1 Bare and hydrogenated semiconductor surfaces
2.1.1.1 Diamond
2.1.1.2 Silicon
2.1.1.3 Germanium
2.1.2 Reciprocal lattice and surface Brillouin zone
2.2 Vibrations at surfaces
2.2.1 Surface phonons
2.2.2 Vibrations of adsorbed surfaces
2.2.2.1 Si(lll)-(lxl):HandC(lll)-(lxl):H
2.2.2.2 Si(100)-(2xl):H and C(100)-(2xl):H
2.3 Hydrogenation of semiconductor surfaces with atomic hydrogen
2.3.1 Diamond
2.3.2 Silicon
2.3.3 Germanium
References
Chapter 3 Experimental methodologies
3.1 Infrared absorption spectoscopy
3.2 Raman spectroscopy
3.3 Electromagnetic fields at surfces
3.4 Deconvolution
3.5 Comparison between IR and Raman spectroscopy
References
Chapter 4 Theory of surface vibrational dynamics
4.1 Vibrational dephasing
4.2 Vibrational energy reaxation
4.3 Quantum vibron-phonon coupling and symmetry considerations
References
Chapter 5 Experiment
5.1 Infrared measurements
5.2 Raman measurements
References
Chapter 6 Hydrogenated diamond surfaces
6.1 Sample preparation and spectrum assignment
6.2 Vibrational dephasing and energy relaxation
References
Chapter 7 Hydrogenated silicon and germanium surfaces
7.1 Vibrational dephasing dynamics
7.1.1 Multi-mode dephasing model
7.1.2 Structural dependence of vibrational dephasing dynamics
7.1.3 Dependence on surface symmetry
7.1.4 Comparison with CO/metal systems
7.1.5 The effect of thermal expansion to frequency shift
7.1.6 Symmetry rules applied to vibrational relaxation dynamics
7.2 Characterization ofGe(l I l)-(lxl):H
7.2.1 LEED studies
7.2.2 Vibrational spectroscopic measurements
References
1.1 G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (John Wiley, New York, 1994).
1.2 M. L. Hitchman and K. F. Jensen, Chemical vapor deposition : principles and applications (San Diego : Academic Press, London, 1993)
1.3 K. E. Spear and J. P. Dismukes, Synthetic Diamond: Energing CVD Science and Technology (Johnson-Wiley, New York, 1994).
1.4 J. T. Yates, Jr. and T. E. Madey, Vibrational Spectroscopy of Molecules on Surfaces (Plenum, New York, 1987).
1.5 P. Jakob and B. N. J. Persson, J. Chem. Phys. 109, 8641 (1998).
1.6 M. Trenary, K. H. Vram, F. Bozso and J. T. Yates, Jr., Surf. Sci. 147, 269 (1984).
1.7 B. N. J. Persson, and R. Ryberg, Phys. Rev. Lett., 54, 2119 (1985).
1.8 P. Jakob, Y. J. Chabal and K. Raghavachari, Chem. Phys. Lett. 187, 325 (1991).
1.9 J. C. Tully, Y. J. Chabal, K. Raghavachari, J. M. Bowman and R. R. Lucchese, Phys. Rev. B 31, 1184 (1985).
2.1 D. Haneman, Rep. Prog. Phys. 50, 1045 (1987).
2.2 M. J. Bozack, W. J. Choyke, L. Muehlhoff and J. T. Yates, Jr., J. Appl. Phys. 60, 3750 (1986).
2.3 E. Johansson and J.-O. Carlsson, Diam. Relat. Matt. 4, 155 (1995).
2.4 E. C. Sowa, G. D. Kubiak, R. H. Stulen and M. A. Van Hove, J. Vac. Sci. Technol. A 11, 111 (1980).
2.5 D. R. Alfonso, D. A. Drabold and S. E. Ulloa, Phys. Rev. B 51, 14669 (1995).
2.6 K.C. Pandey, Phys. Rev. B 25, 4338 (1982).
2.7 C. Su, K.-J. Song, Y. L. Wang, H.-L. Lu, T. J. Chuang and J.-C. Lin, J. Chem. Phys. 107, 7543 (1997).
2.8 A. V. Hamza, G. D. Kubiak and R. H. Stulen, Surf. Sci. 237, 35 (1990 ).
2.9 J. B. Marsh and H. E. Farnsworth, Surf. Sci. 1, 3 (1964).
2.10 O. M. Kuttel, L. Diederich, E. Schaller, O. Carnal and L. Schlapbach, Surf. Sci. 337, L812 (1995).
2.11 M.A. Van Hove, W.H. Weinberg and C.-M. Chan, Low-Energy Electron Diffraction (Springer-Verlag, Berlin, 1986).
2.12 R. E. Schlier and H. E. Farnsworth, J. Chem. Phys. 30, 917 (1959).
2.13 N. Jedrecy, M. Sauvage-Simkin, R. Pinchaux, J. Massies, N. Gresiser and V. H. Etgens, Surf. Sci. 230, 197 (1990).
2.14 D.-S. Lin, T. Miller and T.-C. Chiang, Phys. Rev. Lett. 67, 2187 (1991).
2.15 E. Landemark, C. J. Karlsson, Y.-C. Chao and R. I. G. Uhrberg, Phys. Rev. Lett. 62, 1588 (1992).
2.16 E. Landemark, C. J. Karlsson, Y.-C. Chao and R. I. G. Uhrberg, Surf. Sci. 287, 529 (1993).
2.17 D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979).
2.18 P. C. Weakliem, G. W. Smith and E. A. Carter, Surf. Sci. 232, L219 (1990).
2.19 J. Dabrowski and M. Scheffler, Appl. Surf. Sci. 56, 15 (1992).
2.20 N. Roberts and R. J. Needs, Surf. Sci. 236, 112 (1990).
2.21 P. Kruger and J. Pollmann, Phys. Rev. B 47, 1893 (1993).
2.22 J. E. Northrup, Phys. Rev. B 47, 10032 (1993).
2.23 P. W. Palmberg and W. T. Peria, Surf. Sci. 6, 57 (1967).
2.24 D. Haneman, Adv. Phys. 31, 165 (1982).
2.25 J. J. Boland, Science, 255, 186 (1992).
2.26 R. D. Brigans and H. Hochst, Appl. Surf. Sci. 11-12, 368 (1982).
2.27 J. C. Fernadez, W. S. Yang, H. D. Shih, F. Jona, D. W. Jepsen and P. M. Marcus, J. Phys. C 14, L55 (1981).
2.28 G. Le Lay, J. Kanski , P. O. Nilsson, U. O. Karlsson and K. P. Hricovini, Phys. Rev. B 45, 6692 (1992).
2.29 J. A. Appelbaum, G. A. Baraff, D. R. Hamann, H. D. Hagstrum and T. Sakurai, Surf. Sci. 70, 654 (1978).
2.30 H. Luth, Surfaces and Interfaces of Solid Materials, 3rd ed. (Springer, Berlin, 1997).
2.31 H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations (Academic press, New York, 1982).
2.32 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 51, 7139 (1995).
2.33 R. Honke, P. Pavone and U. Schroder, Surf. Sci. 367, 75 (1996).
2.34 B. N. Davidson and W. E. Pickett, Phys. Rev. B 49, 11253 (1994).
2.35 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 51, 7150 (1995).
2.36 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 54, 8605 (1996).
2.37 V. Graschus, A. Mazur and J. Pollmann, Proceedings of ICPS-23, edited by M. Scheffler and R. Zimmerrann (World Scientific, Singapore, 1996), p. 931.
2.38 C. Su, K.-J. Song, Y. L. Wang, H.-L. Lu, T. J. Chuang and J.-C. Lin, J. Chem. Phys. 107, 7543 (1997).
2.39 C.-L. Cheng, H.-C. Chang, J.-C. Lin, K.-J. Song and J.-K. Wang, Phys. Rev. Lett. 78, 3713 (1997).
2.40 B. D. Thoms and J. E. Butler, Surf. Sci. 328, 291 (1995).
2.41 C. C. Cheng and J. T. Yates, Jr., Phys. Rev. B 43, 4041 (1991).
2.42 J. J. Boland, Surf. Sci. 261, 17 (1992)
2.43 K. Oura, J. Yamane, K. Umezawa, M. Naitoh, F. Shoji and T. Hanawa, Phys. Rev. B 41, 1200 (1990).
2.44 T. Sakurai and H. D. Hagstrum, Phys. Rev. B 14 1593 (1976).
2.45 H. Froitzheim, U. Kohler and H. Lammering, Surf. Sci. 149, 537 (1985).
2.46 Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett. 54, 1055 (1985).
2.47 Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett. 53, 282 (1984)
2.48 Y. M. Wu, J. Baker, P. Hamilton and R. M. Nix, Surf. Sci. 295, 133 (1993).
2.49 C. M. Greenlief, S. M. Gates and P. A. Holbert, J. Vac. Sci. Technol. A 7, 1845 (1989).
2.50 F. Owman and P. Martenson, Surf. Sci. 303, L367 (1994).
2.51 Y. J. Chabal, Surf. Sci. 168, 594 (1986).
2.52 G. Lu and J. E. Crowell, J. Chem. Phys. 98, 3415 (1993).
2.53 C. Stuhlmann, G. Bogdanyi and H. Ibach, Phys. Rev. B 45, 6786 (1992).
2.54 P. Dumas and Y. J. Chabal, J. Vac. Sci. Technol. A 10, 2160 (1992).
3.1 Y. J. Chabal, Surf. Sci. Rep. 8, 211 (1988).
3.2 J. T. Yates, Jr. and T. E. Madey, Vibrational Spectroscopy of Molecules on Surfaces (Plenum Press, New York 1987).
3.3 T. F. Heinz, "Second-Order Nonlinear Optical Effects at Surfaces and Interfaces" in Nonlinear Surface Electromagnetic Phenomena, edited by H.-E. Ponath and G. I. Stegeman (North-Holland, Amsterdam, 1992), p. 353.
3.4 H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, New York, 1982).
3.5 A. Laubereau and W. Kaiser, in Chemical and Biological Applications of Lasers Vol. II, edited by C. B. Moore (Academic, New York 1977).
3.6 S. Marks, P. A. Cornelius and C. B. Harris, J. Chem. Phys. 73, 3069 (1980).
3.7 Ph. Avouris and B. N. J. Persson, J. Phys. Chem. 88, 837 (1984).
3.8 J. W. gadzuk and A. C. Luntz, Surf. Sci. 144, 429 (1984).
3.9 W. Suetaka, Surface Infrared and Raman Spectroscopy Methods and Applications (Plenum Press, New York, 1995).
3.10 I. N. Levine, Quantum Chemistry, Volume II: Molecular Spectroscopy (Allyn & Bacon, Boston, 1970), Chapter 2.
3.11 G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
3.12 M. Moskovits, J. Chem. Phys. 77, 4408 (1982).
3.13 D. A. Skoog, Principles of Instrumental Analysis (Sauders College Publishing, 1997).
3.14 Z. Crljen and D. C. Langreth, Phys. Rev. B 35, 4224 (1987).
3.15 Y. J. Chabal, Phys. Rev. Lett. 55, 845 (1985).
3.16 J. C. Tully, Y. J. Chabal, K. Raghavachari, J. M. bowman, and R. R. Lucchese, Phys. Rev. B 31, 1184 (1985).
3.17 P. Dumas, Y. J. Chabal and G. S. Higashi, Phys. Rev. Lett. 65, 1124 (1990).
3.18 A. Campion, J. K. Brown and V. M. Grizzle, Surf. Sci. 115, 153 (1982).
3.19 M. A. Hines, Y. J. Chabal, T. D. Harris and A. L. Harris, J. Chem. Phys. 101, 8055 (1994).
3.20 R. G. Greenler and T. C. Slager, Spectrochim. Acta 29A, 193 (1973).
3.21 J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1963).
3.22 Alan Campion, in Vibrational Spectroscopy of Molecules on Surfaces, Edited by J. T. Yates, Jr. and T. E. Madey (New York 1987), p. 345.
3.23 A. G. Marshall and F. R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User''s Handbook (Elsevier Science, New York, 1990).
3.24 American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York 1972), pp. 6.124-6.155.
4.1 R. G. Gordon, J. Chem. Phys. 40, 1973 (1964); 42, 3658 (1965); 43, 1307 (1965); Adv. Magn. Reson. 3, 11 (1968).
4.2 L. A. Nafie and W. L. Peticolas, J. Chem. Phys. 57, 3145 (1972).
4.3 P.W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).
4.4 R. Kubo and K. Tomita, J. Phys, Soc. Japan 9, 888 (1954).
4.5 C. B. Harris, R. M. Shelby and P. A. Cornelius, Chem. Phys. Lett. 57, 8 (1978).
4.6 P. Avouris and B. N. J. Persson, J. Phys. Chem. 88. 837 (1984); J. W. Gradzuk and A. C. Luntiz, Surf. Sci. 144, 429 (1984); M. Hutchinson and T. F. George, Chem. Phys. Lett. 124, 211 (1986); R. G. Tobin, ibid. 183, 226 (1987).
4.7 B. N. J. Persson and R. Ryberg, Phys. Rev. B 32, 3586 (1985).
4.8 J. C. Tully, Y. J. Chabal, Krishnan Raghavachari, J. M. bowman and R. R. Lucchese, Phys. Rev. B 31, 1184 (1985).
4.9 P. Jakob, Y. J. Chabal and Krishnan Raghavachari, Chem. Phys. Lett. 187, 325 (1991).
4.10 B. N. J. Persson and R. Ryberg, Phys. Rev. B 40, 10273 (1989).
4.11 Y. S. Touloukian, R. K. Kirby, R. E. Taylor and P. D. Desai, Thermophysical Properties of Matter: Thermal Expansion, Metallic Elements and Alloys, Vol 12 (Plenum, New York, 1975).
4.12 P. Jakob and B. N. J. Persson, Phys. Rev. B 16, 10644 (1977).
4.13 D. J. Diestler, J. Chem. Phys. 60, 2692 (1974).
4.14 S. H. Lin, J. Chem. Phys. 61, 3810 (1974).
4.15 A. Nitzan, S. Mukamel and J. Jortner, J. Chem. Phys. 63, 200 (1975).
4.16 B. N. J. Persson and A. I. Volokitin, Chem. Phys. Lett. 184, 301 (1991).
4.17 Z. Ye and P. Piercy, Phys. Rev. B 47, 9797 (1993).
4.18 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
4.19 S. H. Lin, R. Alden, R. Islampour, H. Ma and A. A. Villaeys, Density Matrix Method and Femtosecond Processes (World Scientific, Singapore, 1991).
4.20 W.-K. Liu, M. Hayashi, J.-C. Lin, H.-C. Chang, S. H. Lin and J.-K. Wang, J. Chem. Phys. 106, 5920 (1997).
5.1 (a) T. Ando, S. Inoue, M. Ishii, M. Kamo, Y. Sato, O. Yamada and T. Nakano, J. Chem. Soc. Faraday Trans. 89, 749 (1993). (b) T. Ando, M. Ishii, M. Kamo and Y. I. Sato J. Chem. Soc. Faraday Trans. 89, 1383 (1993). (c) T. Ando, M. Ishii, M. Kamo, Y. I. Sato, J. Chem. Soc. Faraday Trans. 89, 1783 (1993).
5.2 H.-C. Chang, J.-C. Lin, J.-Y. Wu, and K.-H. Chen, J. Phys. Chem. 99, 11081 (1995).
5.3 Y. Mitsuda, T. Yamada, T. J. Chuang, H. Seki, R. P. Chin, J. Y. Huang and Y. R. Shen, Surf. Sci. 257, L633 (1991).
5.4 B. D. Thoms, M. S. Owens, J. E. Butler and C. Spiro, Appl. Phys. Lett. 65, 2957 (1994).
5.5 Y. Ando, K. Yamamoto, M. Ishii, M. Kamo and Y. Sato, J. Chem. Soc. Faraday Trans. 89, 3635 (1993).
5.6 Dumas and Chabal, Phys. Rev. Lett. 65, 1124 (1990).
5.7 J. E. Moody and R. H. Hendel, J. Appl. Phys. 53, 4364(1982).
5.8 C. F. Michael, B. H. J. Neville, L. Yong and M. Alan, J. Chem Phys. 99, 7038 (1993).
5.9 J. J. Boland, Surf. Sci. 261, 17 (1992).
5.10 P. Guyot-Sionnest, P. H. Lin and E. M. Hiller, J. Chem. Phys. 102, 4269 (1995).
6.1 T. Ando, T. Aizawa, K. Yamamoto, Y. Sato and M. Kamo, Diamond Relat. Mater. 3, 975 (1994).
6.2 H.-C. Chang, J.-C. Lin, J.-Y. Wu and K.-H. Chen, J. Phys. Chem. 99, 11081 (1995).
6.3 D. R. Alfonso, D. A. Drabold and S. E. Ulloa, Phys. Rev. B 51, 1989 (1995).
6.4 R. P. Chin, X. Blase, Y. R. Shen and S. G. Louie, Europhys. Lett. 30, 399 (1995).
6.5 T. Anzai, H. Maeoka, A. Wada, K. Domen, C. Hirose, T. Ando and Y. Sato, J. Mol. Struct. 352/353, 455 (1995).
6.6 T. Ando, M. Ishii, M. Kamo and Y. Sato, Diam. Rel. Matt. 4, 607 (1995).
6.7 R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang and H. Seki, Phys. Rev. B 52, 5985 (1995).
6.8 B. D. Thoms and J. E. Butler, Surf. Sci. 328, 291 (1995).
6.9 B. N. J. Persson and R. Ryberg, Phys. Rev. B 32, 3586 (1985).
6.10 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 51, 7150 (1995).
6.11 T. Aizawa, T. Ando, K. Yamamoto, M. Kamo and Y. Sato, Diam. Rel. Mat. 4, 600 (1995).
6.12 B. J. Waclawski, D. T. Pierce, N. Swanson and R. J. Celotta, J. Vac. Sci. Technol. 21, 368 (1982).
6.13 Y.-C. Sun, H. Gai and G. A. Voth, J. Chem. Phys. 100, 3247 (1994).
6.14 B. N. J. Persson and R. Ryberg, Phys. Rev. B 40, 10273 (1989).
6.15 P. Dumas, Y. J. Chabal and G. S. Higashi, Phys. Rev. Lett. 65, 1124 (1990).
6.16 B. N. J. Persson and R. Ryberg, Phys. Rev. Lett. 54, 2119 (1985).
6.17 R. R. Cavanagh, D. S. King, J. C. Stephenson and T. F. Heinz, J. Phys. Chem. 97, 786 (1993).
6.18 P. Guyot-Sionnest, P. Dumas and Y. J. Chabal, J. Electron Spectrosc. Rel. Phenom. 54/55, 27 (1990).
6.19 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 51, 7139 (1995).
6.20 P. Guyot-Sionnest, P. H. Lin and E. M. Hiller, J. Chem. Phys. 102, 4269 (1995).
6.21 B. D. Thoms, M. S. Owens, J. E. Butler and C. Spiro, Appl. Phys. Lett. 65, 2957 (1994).
6.22 CRC Handbook of Chemistry and Physics, 75th ed. (CRC, Boca Raton, 1994).
6.23 Y.-C. Sun and J.-M. Chen, J. Phys. Chem. B 101, 7082 (1997)
6.24 H.-F. Lu, J.-S. Ho, S.-C. Hong, A.-H. Liu, P.-F. Wu and Y.-C. Sun, J. Chem. Phys. 109, 6898 (1998).
6.25 P. Dumas, Y. J. Chabal and G. S. Higashi, Phys. Rev. Lett. 65, 1124 (1990).
6.26 P. Gyot-Sionnest, P. Dumas and Y. J. Chabal, J. Electron Spectrosc. Rel. Phenom. 54/55, 27 (1990).
6.27 P. Guyot-Sionnest, Phys. Rev. Lett. 66, 1489 (1991).
6.28 Y. J. Chabal, Surf. Sci. 168, 594 (1986).
7.1 Z. Crljen and D. C. Langreth, Phys. Rev. B 35, 4224 (1987).
7.2 J. C. Tully, Y. J. Chabal, K. Raghavachari, J. M. bowman and R. R. Lucchese, Phys. Rev. B 31, 1184 (1985).
7.3 P. Dumas, Y. J. Chabal and G. S. Higashi, Phys. Rev. Lett. 65, 1124 (1990).
7.4 B. N. J. Persson and R. Ryberg, Phys. Rev. B 32, 3586 (1985).
7.5 Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett. 53 282 (1984).
7.6 P. Dumas and Y. J. Chabal, J. Vac. Sci. Technol. A 10, 2160 (1992).
7.7 P. Guyot-Sionnest, P. H. Lin and E. M. Hiller, J. Chem. Phys. 102, 4269 (1995).
7.8 J.-C. Lin, K.-H. Chen, H.-C. Chang, C.-S. Tsai, C.-E. Lin and J.-K. Wang, J. Chem. Phys. 105, 3975 (1996).
7.9 P. Guyot-Sionnest, P. Dumas, Y. J. Chabal, and G. S. Higashi, J. Electron. Spectrosc. Rel. Phenom. 54/55 27 (1990).
7.10 P. Stucki, J. A. Schaefer, J. R. Anderson, G. J. Lapeyre, W. Gopel, Solid State Commun. 47, 795 (1983).
7.11 V. Graschus, A. Mazur, and J. Pollmann, in: The Physics of Semiconductors, eds. M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), p. 931.
7.12 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 51, 7139 (1995).
7.13 P. Guyot-Sionnest, Phys. Rev. Lett. 66, 1489 (1991).
7.14 A. Mazur, B. Sandfort, V. Graschus and J. Pollmann, in: FestkUorperprobleme/ Advances in Solid State Physics, Vol. 36, ed. R. Helbig (Vieweg, Braunschweig/ Wiesbaden, 1997) p. 181, and reference therein.
7.15 R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang and H. Seki, Phys. Rev. B 52, 5985 (1995).
7.16 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 54, 8605 (1996).
7.17 G. Lu and J. E. Crowell, J. Chem. Phys. 98, 3415 (1993).
7.18 Y. J. Chabal, Surf. Sci. 168, 594 (1986).
7.19 L. Papagno, X. Y. Shen, J. Anderson, G. Schirripa-Spagnolo and G. J. Lapeyre, Phys. Rev. B 34, 7188 (1986).
7.20 J. Menendez and M. Cardona, Phys. Rev. B 29, 2051 (1984).
7.21 C. Stuhlmann, G. Bogdanyi and H. Ibach, Phys. Rev. B 45, 6786 (1992).
7.22 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B 51, 7150 (1995).
7.23 B. N. J. Persson, F. M. Hoffmann and R. Ryberg. Phys. Rev. 34, 2266 (1986).
7.24 R. Ryberg, "Molecule Surface Interactions" in Advances in Chemical Physics, edited by K. P. Lawley (Wiley, London, 1989).
7.25 B. N. J. Persson and R. Ryberg, Phys. Rev. B 24, 6954 (1981).
7.26 E. Kampshoff, E Hahn and K. Kern, Phys. Rev. Lett. 73, 704 (1994).
7.27 C. Su, K.-J. Song, Y. L. Wang, H.-L. Lu, T. J. Chuang and J.-C. Lin, J. Chem. Phys. 107, 7543 (1997)
7.28 Y. J. Chabal, G. S. Higashi and S. B. Christman, Phys. Rev. B 28, 4472 (1983).
7.29 R. J. Culbertson, L. C. Feldman, P. J. Silverman and R. J. Haight, J. Vac. Sci. Technol. 20, 868 (1982).
7.30 I. S. Huang (private communication).
7.31 J. J. Boland, Science 255, 186 (1992).
7.32 R. J. Phaneuf and M. B. Webb, Surf. Sci. 164, 167 (1985).
7.33 J. J. Boland, Science 255, 186 (1992).
7.34 L. Surnev and M. Tikhov, Surf. Sci. 138, 40 (1984).
7.35 R. S. Armstrong and R. J. H. Clark, J. Chem. Soc. Farada Trans. 72, 11 (1976).
7.36 U. Jansson and K. J. Uram, J. Chem. Phys. 91, 7978 (1989).
7.37 M. A. Hines, Y. J. Chabal, T. D. Harris and A. L. Harris, J. Chem. Phys. 101, 8055 (1994).
7.38 C.-S Tsai, C. Chen, C.-E. Lin, J.-C. Lin and J.-K. Wang, Surf. Sci. 427, 318 (1999).
7.39 P. Jakob, Y. J. Chabal and K. Raghavachari, Chem. Phys. Lett. 187, 325 (1991).
7.40 Handbook of Chemistry and Physics, 75th ed., edited by D. R. Lide (CRC Press, Boca Raton, 1994).
7.41 C.-S. Tsai, C. Chen, C.-E. Lin, J.-C. Lin and J.-K. Wang (in preparation).
7.42 G. Lu and J. E. Crowell, J. Chem. Phys. 98, 3415 (1993).
7.43 F. Owman and P. Martensson, Surf. Sci. 324, 211 (1995).
7.44 Y. Wei, L. Li and I. S. T. Tsong, Appl. Phys. Lett. 66, 1818 (1995).
7.45 D. R. Olander, M. Balooch, J. Abrefah and W. J. Siekhaus, J. Vac. Sci. Technol. B5, 1404 (1987).
7.46 G. J. Pietsch, Appl. Phys. A 60, 347 (1995).
7.47 Y.-C. Huang, J. Flidr, T. A. Newton and M. A. Hines, J. Chem. Phys. 109, 5025 (1998).
7.48 G. W. Trucks, K. Raghavachari, G. S. Higashi and Y. J. Chabal, Phys. Rev. Lett. 65, 504 (1990).
7.49 C.-S. Tsai, C.-E. Lin, J.-C. Lin and J.-K. Wang, Chem. Phys. Lett. 295, 509 (1998).
7.50 N. Miyata, S. Watanabe and S. Okamura, Appl. Surf. Sci. 117/118, 26 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top