(54.236.62.49) 您好!臺灣時間:2021/03/06 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳芳
研究生(外文):Chia-Fang Lin
論文名稱:重症肌無力病人的T細胞接受器基因表現之研究
論文名稱(外文):Expression Analyses of TCR alpha/delta-chain Genes in Lymphocytes from a Patient with Myasthenia Gravis
指導教授:果伽蘭
指導教授(外文):Chia-Lam Kuo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:53
中文關鍵詞:T細胞抗原接受器重症肌無力乙醯膽鹼受體自體免疫
外文關鍵詞:T Cell ReceptorMyasthenia Gravisacetylcholine receptorcomplementarity determining regionautoimmunity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
免疫系統是人類及其他脊椎動物用來保護自體免受外來物入侵的一套複雜的生命網絡。T細胞所調節的反應在免疫系統中是十分重要的一環。常見的自體免疫疾病如多發性硬化症(mutiple sclerosis, MS)、類風濕性關節炎(rheumatoid arthritis , RA)、胰島素依賴型糖尿病(insulin-dependent diabetes mellitus, IDDM)等,皆是由於T細胞失去對自體抗原的耐受性(self-tolerance)而有所反應所造成的,而本論文所研究的對象重症肌無力(myasthenia gravis)則是一種抗體調節(antibody-mediated)的自體免疫疾病,主要的致病原因之一是病人體內產生一種乙醯膽鹼受體(acetylcholine receptor)的抗體,造成乙醯膽鹼受體的減少,從重症肌無力的動物模型EAMG(experimental autoimmune myasthenia gravis)與從人類血液中篩選出乙醯膽鹼受體專一的T細胞發現,CD4+的輔助T細胞(T helper cells, Th)扮演著關鍵的角色。本論文主旨在於分析重症肌無力病人的T細胞接受器(T cell receptor,TCR)的基因使用以及T細胞接受器CDR3部分的核酸序列,希望能藉由這些實驗能分析出與重症肌無力相關的特殊T細胞接受器,針對T細胞抗原接受器發展出可行的治療方式,將可以更有效的治療重症肌無力。
從本論文分析的T細胞接受器的核酸序列中,發現數個出現頻率頗高的特殊使用情形,V2-J53-C、V5-J49-C、V14-J1-C,很可能與重症肌無力的致病原因相關,值得進一步的探討。
此外,還有一些T細胞接受器CDR3的序列與現存的基因庫比對極為相近相似甚至完全相同,它們所對應的T細胞都有其特殊的性質,而它們是否與重症肌無力有關,也需要更進一步的實驗才能證明。
因此我們希望根據目前所得到的結果,繼續針對特殊表現的T細胞接受器做進一步的研究,找出重症肌無力特殊的T細胞。
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against acetylcholine receptor (AChR).T lymphocytes in MG patients are considered to exert a regulatory function in the development of anti-AchR antibodies. These autoreactive T cells may be activated through recognition of self-antigen, such as AchR and/or AchR-related molecules and complementarity determining region (CDR3) in the V region of T cell receptor (TCR) molecules is regarded as the major site responsible for the antigen-recognition.
In this study, we analyzed in detail the TCR Valpha and Vdelta gene usage in peripheral blood lymphocytes (PBL) of a MG patient as an initial step in understanding the relevancy of TCRs in the pathogenic T cells. Several Valpha/Vdelta and Calpha/Cdelta sequence-specific primers were synthesized and used in RT-PCR/PCRs to obtain TCR alpha/delta-chain genes present in PBLs of the MG patient. PBLs from the patient’s brother who has no MG symptoms were also analyzed in parallel to distinguish the effect caused by either MHC alone or MHC plus the potential pathogenic antigens on the observed TCR V gene usage
Dominant usage of certain TCR VJ combination, that is V2-J53-C, V5-J49-Cand V14-J1-C, is observed in the samples of the MG patient, but not in the isolates from patient’s brother. Moreover, these TCR genes were suggested to be isolated from oligoclonally-expanded T cells since identical V-J junctional sequences were evidenced by nucleotide sequence analysis. It, therefore, indicates that the T cells bearing these TCRs may be activated by certain antigens (could be AchR or AchR-like peptides) in the MG patient and suggests that these T cells might play an important role in generating MG. In addition, some CDR3 sequences in the TCRs isolated from the MG patient are identical or homologous to the CDR3 sequences in TCRs of some previously identified T cells, such as DN  and  T cells. The functional significance of these TCR genes present in the MG patient is discussed in this report.
目錄 i
圖表目錄 ii
中文摘要 iii
英文摘要 iv
縮寫表 v
前言 1
T細胞與免疫反應 1
T細胞接受器 1
T細胞接受器的多樣性 2
T細胞接受器與抗原以及抗原主要組織相容性複合體之間的作用 2
自體免疫(Autoimmnity)與T細胞 3
重症肌無力(Myasthenia Gravis)3
重症肌無力與T細胞抗原接受器(Myasthenia Gravis and TCR)4
本論文所探討的主要問題 5
實驗材料與方法 6
實驗材料 6
實驗方法 6
互補去氧核醣核酸的選殖(cDNA cloning)6
核酸序列分析(Sequencing)9
結果 11
V基因使用的情形 11
J基因使用的情形 12
CDR3的性質 13
討論 40
V基因使用的情形 40
J基因使用的情形 40
特殊V基因J基因組合的性質 41
CDR3 43
delta chain T細胞接受器 44
從本論文實驗方法找尋到乙醯膽鹼受體片段專一T細胞的可能性 44
附錄一 48
附錄二 49
參考文獻 50
1. Clark, E. A. and Ledbetter, J. A. How B and T cells talk to each other. Nature (1994) 367,425-428
2. Germain, R.N. Major histocompatibility complex-dependent antigen processing and peptide presentation: providing ligands for the clonal activation of T lymphocytes. Cell (1994) 76, 287-299.
3. Malissen, B., Malissen, M. Function of TCR and pre-TCR subunits : lessons from gene ablation. Curr. Opin. Immunol.(1996) 8,383-393
4. Christopher E. Rudd . Adapters and Molecular Scaffolds in Immune Cell Signaling . Cell (1999) 96,5-8.
5. Tonegawa, S. Somatic generation of antibody diversity. Nature (1983) 303, 575-581.
6. Davis, M.M., and Bjorkman, P.J. T cell antigen receptor genes and T cell recognition. Nature (1988) 334, 395-401.
7. Hiom, K .and Gellert, M. Assembly of a 12/23 Paired Signal Complex: A Critical Control Point in V(D)J Recombination. Molecular Cell (1998) 1, 1011-1019
8. Lewis, S. M. The mechanism of V(D)J joining : Lessons from molecular, immunological, and comparative analyses. Adv. Immunol. (1994) 56,27-133
9. Chothia, C., Boswell, D. R. and Lesk, A. M. The outline structure of the T cell alpha beta receptor. EMBO J. (1988)7,3745-3755
10. Claverie, J. M., Prochnicka-Chalufour, A. and Bougueleret, L. Implications of a Fab-like structure for the T cell receptor. Immunol. Today (1989) 10,10-14
11. Chien, Y. H. and Davis, M.M. How ab T-cell receptor ’see’ peptide/MHC complexes. Immunol. Today. (1993)14:597-602
12. Hong, S.-C., Chelouche, A., Lin, R.-h., Shaywitz, D., Braunstein, N.S., Glimcher, L., and Janeway, C.A., Jr. A MHC interaction site maps to the amino-terminal half of the T cell receptor chain variable domain. Cell (1992) 69, 1-20.
13. Jorgensen, J.L., Esser, U., Fazekas de St. Groth, B., Reay, P.A., and Davis, M.M.. Mapping T cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature (1992) 355, 224-230.
14. Luescher, I.F., Anjiure, F., Peitisch, M.C., Jongeneel, C.V., Cerottini, J.C., and Romero, P.. Structural analysis of TCR-ligand interactions studied on H-2 Kd restricted cloned CTL specific for a photoreactive peptide derivative. Immunity (1995) 3, 51-63.
15. Fields, B. A.,et al. Crystal structure of the V domain of a T cell antigen receptor. Science(1995) 270,1821-1824
16. Bentley, G.A., Boulot, G., Karjalainen, K., and Mariuzza, R. Crystal structure of the s chain of a T cell antigen receptor. Science (1995) 267, 1984-1987.
17. Bjorkman, P.J., Saper, M.A., Samraoui, B., Bennett, W.S., Strominger, J.L., and Wiley, D.C.. Structure of the human class I histocompatibility antigen HLA-A2. Nature (1987)329, 506-512
18. Stern, L.J., Brown, J.H., Jardetsky, TS, Gorga, J.C., Urban, R.G., Strominger, J.L., and Wiley, D.C.. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature (1994) 368, 215-221.
19. Stern, L.J., and Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure (1994) 2, 245-251.
20. Hedrick S. M.,Engel,I,McElligott, D. L.,Fink, P. J., Hsu, M. L.,Hansburg, D., Matis, L. A. Selection of amino acid sequences in the beta chain of the T cell antigen receptor. Science (1988)239,1541-1544
1. Lai, M-Z., Jang, Y-J., Chen, J-K. and Gefter, M. L. Restricted V-(D)-J junctional region in the T cell response to -repressor. J. Immunol.(1990) 144,4851-4856
22. McHeyzer-Williams, M. and Davis M. M. Antigen-specific development of primary and memory T cells in vivo. Science (1995)268,106-111
23. Vicari, A. P. and Zlotnik, A. Mouse NK1.1+T cells: a new family of T cells. Immunol. Today(1996) 17,71-76
24. Parijs, L.V., Abbas, A. K..Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science (1998) 280,243-248
25. Kronenberg M., Self-tolerance and autoimmunity . Cell (1991) 65,537-542
26. Ewing C. Bernard CC. Insights into the aetiology and pathogenesis of multiple sclerosis. Immunology & Cell Biology. 76,47-54
27. Goronzy J.J. Zettl A. Weyand CM. T cell receptor repertoire in rheumatoid arthritis. International Reviews of Immunology. (1998)17,339-63,
28. Durinovic-Bello I. Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens. Autoimmunity. (1998) 27,159-77,.
29. Haskins K.., McDuffie M.., Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science (1990) 249,1433-1436.
30. Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. (1990)8,579-621
31. Yang ,Y., Charlton, B., Shimada, A., Canto, R. D. and Fathman C. G. Monoclonal T cells identified in early nod islet infiltrates. Immunity(1996) 4,189-194
32. Willcox, N. Myasthenia gravis. Curr. Opin. Immunol.(1993)5,910-917
33. Keesey J. A treatment algorithm for autoimmune myasthenia in adults. Annals of the New York Academy of Sciences. (1998)841,753-768
34. Gomez, C. M. and Richman, D. P. Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis. J. Immunol (1985) 135,234-241
35. Kual, R., Shenoy, M., Oluszko, E. and Christadoss, P. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. J. Immunol.(1994) 152,3152-3157
36. Balasa, B.,Deng, C.,Lee, J.,Bradley, L. M., Dalton, D. K., Christadoss, P. and Sarvetnick, N. Interferon gamma is necessary for the genetics of acetylcholine receptor-induced clinical experimental autoimmune myastheinia gravis in mice. J. Exp. Med. (1997) 186,385-391
37. Balasa, B.,Deng, C.,Lee, J.,Bradley, L. M., Christadoss, P. and Sarvetnick, N. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. J.Immunol. (1998) 161,2856-2862
38. Hawke, S., Matsuo, H., Nicolle, M., Malcherek, G., Melms, A. and Willcox, N. Autoimmune T cells in myasthenia gravis: heterogeneity and potential for specific immunotargeting. Immunol. Today (1996) 7,307-311
39. Kimura, N., Toyonaga, B., Yoshikai, Y., Du, R.-P. and Mak, T. W. Sequences and repertoire of the human T cell receptor alpha and beta chain variable region genes in thymocytes. Eur. J. Immunol (1987) 17,375-383
40. Roman-Roman, S., Ferradini, L., Azocar, J., Genevee, C., Hercend, T. and Triebel, F. Studies on the human T cell receptor alpha/beta variable region genes. I. Identification of 7 additional V alpha subfamilies and 14 J alpha genes segment. Eur. J. Imnunol. (1991) 21,927-933
41. Takihara, Y., Reimannm, J., Michalopoulos, E., Moretta, L., Minden, L. and Mak, T. W. Diversity and structure of human T cell receptor delta chain genes in peripheral blood gamma/delta bearing T lymphocytes. J. Exp. Med. (1989) 169,393-405
1. 徐瑞毅,國立台灣大學生化科學研究所碩士論文(1994)
43. Chung, C. T.,Niemela, S. L., and Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA (1989) 86,2172-2175
44. DNA Sequencing Manual, LI-COR, p2-1
45. Wang, F., Huang, C-Y., and Kanagawa, O. Rapid deletion of rearranged T cell antigen receptor (TCR) Va-Ja segment by secondary rearrangement in thymus: Role of continous rearrangement of TCR a chain gene and positive selection in the T cell repertoire formation. Proc. Natl. Acad. Sci. USA (1998) 95,11834-11839
46. McHeyzer-Williams ,M. G. and Davis, M. M. Antigen-specific development of primary and memoty T cells in vivo. Science (1995) 268,106-111
47. Kraig, E., Pierce, J. L.,Clarkin, K. Z., Standifer, N. E., Currier, P., Wall, K. A. and Infante, A. J.Restricted T cell receptor repertoire for acetylcholine receptor in murine myasthenia gravis. Journal of Neuroimmunology. (1996) 71,87-95
48. Lehmann, P. V., Forsthuber, T.,Miller, A. and Sercarz., E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. (1992) 358,155-157
49. Kirsher, S. L.,Waisman, A.,Zisman, E.,Ben-Nun, A. and Mozes, E.T cell receptor expression and differential proliferative responses by T cells specific to a myasthenogenic peptide. Cellular Immunol. (1997) 180, 20-28
50. Agius M. A. Twaddle GM. Fairclough RH. Epitope spreading in experimental autoimmune myasthenia gravis. Annal. N.Y Acad. Sci. (1998) 841,365-367
51. Parijs, L. V. and Abbas, A. K. Homeostasis and self-tolerance in the immune system: Turning lymphocytes off. Science(1998) 280,243-247
52. Wilson,S.B.,Kent,S.C.,Patton,K.T., Orban,T.,Jackson,R.A.,Exley,M.,Porcelli,S., Schata,D. A.,Atkinson,M. A., Balk, S. P.,Strominger, J. L. and Hafler, D. A. Extreme Th1 bias of invariant Va24JaQ T cells in type I diabetes. Nature (1998) 391,177-181.
53. Porcelli, S., Yockey, C. E., Brenner, M. B. and Balk, S. P. Analysis of T cell antigen receptor expression by human peripheral blood CD4-CD8- T cells demonstrates preferential use of several V genes and a invariant TCR  gene. J. Exp. Med. (1993) 178(1),1-16
54. Groh, V., Steinle, A., Bauer, S. and Spies, T. Recognition of Stress-Induced MHC Molecules by Intestinal Epithelial T Cells. Science(1998) 279,1737 - 1740
55. Groh, V., Steinle, A., Bauer, S. and Spies, T. Science(1998)279,1737-1739
56. Kaufmann, S. H. / and other unconventional T lymphocytes:What do they see and what do they do? Proc. Natl. Acad. Sci. USA (1996)93,2272-2279
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔