(3.235.108.188) 您好!臺灣時間:2021/02/26 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王俊程
研究生(外文):Jiun-Cheng Wang
論文名稱:鉻貴橄欖石雷射鎖模及其應用
論文名稱(外文):Chromium-Doped Forsterite Laser Mode-Locking and Its Applications
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:64
中文關鍵詞:鉻貴橄欖石飛秒光孤子飽和吸收體低溫成長砷化鎵電子生命週期
外文關鍵詞:Cr4+:forsteritefemtosecondsolitonsaturable absorberlow-temperature-grown GaAselectron lifetime
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們將報告建造一台飛秒級鉻貴橄欖石雷射的過程。在這台雷射中,我們使用一個半導體飽和吸收鏡來作光孤子鎖模,如此可以產生出寬度甚小於半導體飽和吸收鏡反應時間的脈衝。脈衝是由光孤子脈衝修飾機制所形成,也就是利用自相調變與群速色散之間的交互作用。在這個過程中,半導體飽和吸收鏡是用來引發飛秒脈衝並使其穩定輸出。
另外,這篇論文也將報告我們利用所建造的飛秒級鉻貴橄欖石雷射,對於低溫成長砷化鎵內部電子生命週期所作的初步研究。我們分別使用低於能帶間隙的光源和高於能帶間隙的光源來作激發,量測的結果顯示,低溫成長砷化鎵是十分適用於高速光纖通訊的材料。

In this thesis, we report the construction of a femtosecond chromium-doped forsterite laser. The laser was soliton mode-locked with a semiconductor saturable absorber mirror (SESAM). Ultrashort pulses with pulsewidth much shorter than the response time of the SESAM were generated. The pulse was shaped by a soliton-like pulse shaping mechanism, i.e., the interplay between self-phase modulation (SPM) and group-velocity dispersion (GVD). The SESAM was used to initialize and stabilize the femtosecond pulse generation.
A preliminary study on the electron lifetime of low-temperature-grown GaAs (LT-GaAs) samples by using the femtosecond Cr4+:forsterite laser is also presented. Both below bandgap and above bandgap excitation were performed. Our measurements indicate that LT-GaAs is a suitable material for high-speed optical communication applications.

Contents
Acknowledgementi
Abstractii
Contentsiv
List of Figuresvi
List of Tablesviii
1 Introduction1
2 Soliton Mode-Locking with a Slow Saturable Absorber5
2.1 Introduction5
2.2 Mode-locking7
2.3 Pulse shaping mechanisms12
2.3.1 Self-phase modulation12
2.3.2 Group-velocity dispersion17
2.3.3 Gain dispersion20
2.3.4 Saturable loss from a slow saturable absorber22
2.4 The master equation for soliton mode-locking with a slow saturable absorber23
3 System Scheme and Experimental Results28
3.1 Dispersion compensation28
3.2 Astigmatic compensation31
3.3 Semiconductor saturable absorber mirror33
3.4 Mode-locking of the Cr4+:forsterite laser35
3.5 Experimental results and discussion38
4 Application on Low-Temperature-Grown GaAs Study45
4.1 Introduction45
4.2 Experimental setup46
4.3 Results and discussion48
5 Conclusion56
Reference57
Appendix62

[1] V. Petri?evi?, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infared excitation: Is Cr4+ the lasing ion?" Appl. Phys. Lett., vol. 52, n26, 1988, pp. 2590-2592.
[2] J. B. Birle, G. V. Gibbs, P. B. Moore and J. V. Smith, "Crystal structure of natural olivines." Am. Mineralogist, vol. 53, 1968, pp. 807-824.
[3] V. Petri?evi?, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-doped forsterite." Appl. Phys. Lett., vol. 52, n13, 1988, pp. 1040-1042.
[4] Horacio R. Verdun, Leonard M. Thomas, Donna M. Andrauskas, Tom McCollum, and Albert Pinto, "Chromium-doped forsterite laser pumped with 1.06 mm radiation." Appl. Phys. Lett., vol. 53, n26, 1988, pp. 2593-2595.
[5] Weiyi Jia, Lizhu Lu, B. M. Tissue, and W. M. Yen, "Valence and site of chromium ions in single crystal forsterite fibers." J. Crystal Growth, vol. 109, 1991, pp. 329-333.
[6] Pan Peicong, Zhu Hongbin, Yan Shenhui, Chai Yiao, Wang Siting, and Hou Yinchun, "Distribution and valence of chromium in forsterite crystals grown by the Czochralski techniuqe." J. Crystal Growth, vol. 121, 1992, pp. 141-147.
[7] A Seas, V. Petri?evi?, and R. R. Alfano, "Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser." Opt. Lett., vol. 17, n13, 1992, pp. 937-939.
[8] Alphan Sennaroglu, Timothy J. Carrig, and Clifford R. Pollock, "Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K." Opt. Lett., vol. 17, 1992, n17, pp. 1216-1218.
[9] Alphan Sennaroglu, Clifford R. Pollock, and Howard Nathel, "Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser." Opt. Lett., vol. 18, n10, 1993, pp. 826-828.
[10] A. Seas, V. Petri?evi?, and R. R. Alfano, "Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses." Opt. Lett., vol. 18, n11, 1993, pp. 891-893.
[11] Y. Pang, V, Yanovsky, F. Wise, and B. I. Minkov, "Self-mode-locked Cr:forsterite laser." Opt. Lett., vol. 18, n14, 1993, pp. 1168-1170.
[12] V. Yanovsky, Y. Pang, F. Wise, and B. I. Minkov, "Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion." Opt. Lett., vol. 18, n18, 1993, pp. 1541-1543.
[13] Zhigang Zhang, Kenji Torizuka, Taro Itatani, Katsuyuki Kobayashi, Takeyoshi Sugawa, and Tadashi Nakagawa, "Self-starting mode-locked femtosecond forsterote laser with a semiconductor saturable-absorber mirror." Opt. Lett., vol. 22, n13, 1997, pp. 1006-1008.
[14] Zhigang Zhang, Kenji Torizuka, Taro Itatani, Katsuyuki Kobayashi, Takeyoshi Sugawa, and Tadashi Nakagawa, "Femtosecond Cr:forsterite laser with mode-locking initiated by a quantum-well saturable absorber." IEEE J. Quantum Electron., vol. 33, n11, 1997, pp. 1975-1981.
[15] E. V. Dianov, V. I. Karpov, M. V. Grekov, A. M. Prokhorov, V. F. Kamalov, and E. V. Slobodchikov, ?.3 mm Raman fiber amplifier pumped by Cr:forsterite laser." Electron. Lett., vol. 32, n16, 1996, pp. 1481-1483.
[16] B. Golubovic, B. E. Bouma, I. P. Bilinsky, J. G. Fujimoto, and V. P. Mikhailov, "Self-phase modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherent tomography." Opt. Lett., vol. 21, 1996, pp. 1839-1841.
[17] R. Rox Anderson and John A. Parrish, "The Optics of Human Skin." J. Investigative Dermatology, vol. 77, n1, 1981, pp. 13-18.
[18] E. P. Ippen, "Principles of Passive Mode Locking." Appl. Phys. B, vol. 58, 1994, pp. 159-170.
[19] Walter Koechner, Solid-State Laser Engineering, Fourth Extensively Revised and Updated Edition, Springer-Verlag Berlin Heidelberg, 1996.
[20] T. Brabec, Ch. Spielmann, P. E. Curley, and F. Krausz, "Kerr lens mode locking." Opt. Lett., vol. 17, n18, 1992, pp. 1292-1294.
[21] Ursura Keller, Kurt J. Weingarten, Franz X. Kartner, Daniel Kopf, Brend Braun, Isabella D. Jung, Regula Fiuck, Clemens Honninger, Nicolai Matuschek, and Juerg Aus der Au, "Semiconductor Saturable Absorber Mirrors (SESAM's) for Femtosecond to Nanosecond Pulse Generation in Solid State Lasers." IEEE J. Select. Topics in Quantum Electron., vol. 2, n3, 1996, pp. 435-453.
[22] F. X. Kartner and U. Keller, "Stabilization of solitonlike pulses with a slow saturable absorber." Opt. Lett., vol. 20, n1, 1995, pp. 16-18.
[23] I. D. Jung, F. X. Kartner, L. R. Brovelli, M. Kamp, and U. Keller, "Experimental verification of soliton mode locking using only a slow saturable absorber." Opt. Lett., vol. 20, n18, 1995, pp. 1892-1894.
[24] F. X. Kartner, I. D. Jung, and U. Keller, "Soliton Mode-Locking with Saturable Absorber." IEEE J. Select. Topics in Quantum Electron., vol. 2, n3, 1996, pp. 540-556.
[25] Anthony E. Sirgman, Lasers, University Science Books, Mill Valley, California, 1986.
[26] Hermann A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984.
[27] Franz X. Kartner, Juerg Aus der Au, and Ursura Keller, "Mode-Locking With Slow and Fast Saturable Absorbers - What's the difference?" IEEE J. Select. Topics in Quantum Electron., vol. 4, n2, 1998, pp. 159-168.
[28] H. A. Haus, J, G, Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking." J. Opt. Soc. Am. B, vol. 8, n10, 1991, pp. 2068-2076.
[29] Edmond B. Treacy, "Optical Pulse Compression with Diffraction Gratings." IEEE J. Quantum Electron., vol. 5, n9, 1969, pp. 454-458.
[30] SCHOTT '96 for Windows, Catalog Optical Glass, Schott Glaswerke, Mainz, Germany, 1996.
[31] R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms." Opt. Lett., vol. 9, n5, 1984, pp. 150-152.
[32] Herwig W. Kogelnik, Erich P. Ippen, Andrew Dienes, and Charles V. Shank, "Astigmatically Compensated Cavities for CW Dye Lasers." IEEE J. Quantum Electron., vol. 8, n3, 1972, pp. 373-379.
[33] Yi-Jen Chiu, Siegfried B. Fleischer, Daniel Lasaosa, and John E. Bowers, "Ultrafast (370 GHz bandwidth) p-i-n traveling wave photodetector using low-temperature-grown GaAs." Appl. Phys. Lett., vol. 71, n17, 1997, pp. 2508-2510.
[34] Hany S. Loka, Seldom D. Benjamin, and Peter W. E. Smith, "Optical Characteristics of Low-Temperature-Grown GaAs for Ultrafast All-Optical Switching Devices." IEEE J. Quantum Electron., vol. 34, n8, 1998, pp. 1426-1437.
[35] P. Grenier and J. F. Whitaker, "Subband gap carrier dynamics in low-temperature-grown GaAs." Appl. Phys. Lett., vol. 70, n15, 1997, pp. 1998-2000.
[36] Gerald L. Witt, "LTMBE GaAs: present status and perspectives." Mater. Sci. Eng. B, vol. 22, 1993, pp. 9-15.
[37] X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stochek, Z. Liliental-Weber, and E. R. Weber, "Mechanism responsible for the semi-insulating properties of loe-temperature-grown GaAs." Appl. Phys. Lett., vol. 65, n, 1994, pp. 3002-3004.
[38] B. Chassange, A. Ivanov, J. Oberle, G. Jonusauakas, C. Rulliere, "Experimental determination of the nonlinear refractive index in an operating Cr:forsterite laser." Opt. Commun., vol. 141, 1997, pp.69-74.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔