跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊贀
研究生(外文):CHUN HSIEN CHEN
論文名稱:1.3um砷化銦鎵/砷化鎵量子點光學特性之研究
論文名稱(外文):Study on optical properties of 1.3 um In0.5Ga0.5As Quantum Dots
指導教授:詹國禎詹國禎引用關係林浩雄林浩雄引用關係
指導教授(外文):Gwo-Jen JanHao-Hsiung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:68
中文關鍵詞:1.3 um量子點砷化鎵砷化銦鎵
外文關鍵詞:1.3 umQuantum DotsGaAsInGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要內容在於使用PL的量測技術研究1.3 μm In0.5Ga0.5As/GaAs 量子點(Quantum Dot, QD)的光學特性,尋找最佳的In0.5Ga0.5As/GaAs量子點成長厚度。
論文中所有In0.5Ga0.5As/GaAs的量子點樣本,均由氣態源分子束磊晶機在溫度480 oC成長一系列不同量子點厚度的樣本。藉由PL的量測研究,尋找出成長高品質In0.5Ga0.5As/GaAs量子點最佳的條件。研究中發現不同的量子點厚度,會造成其發光波長及量子點的密度的變化,而過量的量子點厚度則可能會造成量子點結構開始產生缺陷或是鬆弛。
在PL變溫的量測中,經由Arrhenius的方程式去擬合PL的數據,發現當量子點厚度為8 ML時,有最大的活化能103.8 meV及淬滅能 15.4 meV,且在溫度為9 K的PL頻譜中,明顯地看到8 ML厚度的量子點有三個在不同能階的訊號放光,其相鄰的能階間距約為56 meV呈現簡諧震盪的特性,顯示此厚度的量子點具有拋物線(parabolic)的位障。並經由量子點發光的半寬對溫度的變化中,探討量子點中電荷載子的遷移情形。在論文中也將討論聲子瓶頸效應(phonon bottleneck effect)對量子點的影響並使用速率方程式(rate equation)模型來擬合PL實驗數據,估算量子點的本質鬆弛時間(intrinsic relaxation time)及探討不同的成長方式對量子點的影響。

This work is concentrated on In0.5Ga0.5As/GaAs quantum dots (QDs) optical properties by using Photoluminescence technology and find out optimum thickness of In0.5Ga0.5As/GaAs quantum dots.
All of QDs with different thickness were deposited in gas source molecular beam epitaxy system by using migration enhanced epitaxy technology at growth temperature of 480 0C. By using photoluminescence technology to get optimum growth condition of In0.5Ga0.5As/GaAs quantum dots are our main purposes. Wavelength of luminescence, density and volume are affected by different thickness of quantum dots affect in our research. Defects, dislocations and relax in Quantum dots are induced while we deposit too much material of In0.5Ga0.5As whose thickness of quantum dots exceeds critical thickness. Carrier transfer in quantum dots is observed during temperature-dependent Photoluminescence measurement. Activation energy and thermal quenching of quantum dots are also obtained by fitting the curve with following Arrhenius equation. Activation and quenching energy has maximum value 103.8 meV and 15.4 meV respectively when QDs's thickness is 8 ML.
In their 9K PL spectra, three peaks can be clearly resolved. The energy spacing between neighboring peaks are all equal and the value is about 56 meV. It indicates that the QDs are with harmonic-oscillator-type potentials. We will discuss the influence of phonon bottleneck in QDs and estimate intrinsic relaxation time of QDs by using rough rate equation. In finally, we also discuss the effect of different growth methods on QDs.

第1章 緒論……………………………………………6
第2章 理 論…………………………………………12
2.1 量子點形成之機制12
2.2 能階密度15
2.3 載子之鬆弛17
第3章 實驗設置與量測方法24
3.1 結構設計及磊晶24
3.2 光激螢光量測系統25
第4章 結果與討論29
4.1 量子點厚度之影響29
4.1.1 量子點厚度與PL的關係29
4.1.2 量子點的活化能及淬滅能30
4.2 量子點內的能階32
4.3 量子點中的電荷載子34
4.3.1 溫度的影響34
4.3.2 電荷載子的遷移35
4.3.3 聲子瓶頸效應的影響37
4.4 強化遷移的成長方式38
第5章 結 論62
參 考 文 獻63

1. N. N. Ledentsov, M. Grundmann, N. Kirstaedter, O. Schmidt , R. Heitz, J. Bohrer, D. Bimberg, V. M. Ustinov, V. A. Shchukin, A. Yu. Egorov, A. E. Zhukov, S. Zaitsev, P. S. Kop'ev, Zh. I. Alferov, S. S. Ruvimov, A. O. Kosogov, P. Werner, U. Gosele and J. Heydenreich, "Ordered arrays of Quantum Dots : Formation, electronic spectra, relaxation phenomena, lasing," Solid-State. Electronic, vol 40, pp. 785-789, 1996.
2. N. Yokoyama, S. Muto, K. Imamura, M. Takatsu, T. Mori, Y. Sugiyama, Y. Sakuma, H. Nakao, and T. Adachihara, Solid-State Electron. 40, 505 (1996).
3. J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bohm, and G. Abstreter, "Mass transport equations unifying descriptions of isothermal diffusion, thermomigration, segregation, and position-dependent diffusivity," Appl. Phys. Lett, vol. 73, pp. 2678-2680, 1998.
4. G. Yusa and H. Sakaki, "Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures," Appl. Phys. Lett, vol. 70, pp. 345-347, 1997.
5. Y. Arakawa and K. Sakaki, Appl. Phys. Lett. 40, pp. 939-941, 1982.
6. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs (001)," IEEE Photonics Technol. Lett, vol. 8, pp. 965-967, 1996.
7. M. Grundmann, D. Bimberg, Jpn. J. Appl. Phys. 36, 4181 (1997).
8. R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop'ev and Zh. I. Alferov," Multiphonon-relaxation processes in self-organized InAs/GaAs quantum dots," Appl. Phys. Lett, vol.68, pp. 361-363, 1996.
9. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop'ev and Zh. I. Alferov,"Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers," Appl. Phys. Lett, vol. 69, pp. 1226-1228, 1996.
10. N. N. Ledentsov, I. L. Krestnikov, M. V. Maximov, S. V. Ivanov, C. M. Sotomayor Torres, "Response to ``Comment on `Ground state exciton lasing in CdSe submonolayers inserted in a ZnSe matrix' '' [Appl. Phys. Lett. 70, 2765 (1997)],"Appl. Phys. Lett. 70, pp. 2766-2767, 1997.
11. D. Leonard, S. Farad, F. K. Pond, Y. H. Zhang, J. L. Merz, and P. M. Petroff, "Structural and optical properties of self-assembled InGaAs quantum dots," J. Vac. Sci. Technol. B, vol. 12, pp. 2516, 1994.
12. M. C. Chen, H. H. Lin, and C. W. Shie, "Self-organized InAs/GaAs quantum dots grown by gas source molecular beam epitaxy," J. Appl. Phys, vol. 83, pp. 3061, 1998.
13. D. I. Lubyshev, P. P. Gozalez-Borrero, E. Marega, Jr., E. Petitprez and P. Basmaji, "High index orientation effects of strained self-assembled InGaAs quantum dots," J.Vac. Sci.Technol. B, vol. 14, pp 2212, 1996.
14. A. Madhukar, T. R. Ramachandran, A. Konkar, I. Mukhametzhanov, W. Yu and P. Chen,"On the atomistic and Kinetic nature of strained epitaxy and formation of coherent 3D island quantum Boxes," Appl. Surf. Scie, vol 123/124, pp. 266-275, 1998.
15. A. Tackeuchi, Y. Nakata, S. Muto, Y. Sugiyama, T. Inata and N. Yokoyama, "Near-1.3 μm High-Intensity Photoluminescence at Room Temperture by InAs/GaAs Multi-Coupled Quantum Dots," Jpn. J. Appl. Phys. vol. 34, pp L405-407, 1995.
16. F. Heinrichsdorff, A. Krost, D. Bimberg, A. O. Kosogov and P. Werner, "Self organized defect free InAs/GaAs and InAs/InGaAs/GaAs quantum dots with high lateral density grown by MOCVD," Appl. Surf. Scie. vol. 123/124, pp. 725-728, 1998.
17. V. M. Ustinov, N. A. Maleev,A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V.Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop'ev, Zh. I. Alferov, N. N. Ledentsov and D. Bimberg, "InAs/InGaAs quantum do structures on GaAs substrates emitting at 1.3 μm," Appl. Phys. Lett, vol. 74, pp. 2815-2817,1999.
18. D. L. Huffaker and D. G. Deppe, "Electroluminescence efficiency of 1.3 μm wavelengh InGaAs/GaAs quantum dots," Appl. Phys. Lett, vol. 73,pp 520-521, 1998.
19. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin and D. Deppe, ?.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett, vol. 73, pp 2564-2566, 1998.
20. G. Park. D. L. Huffaker, Z. Zou, O. B. Shchekin and D. Deppe, "Temperature Dependence of Lasing Characteristics for Long-Wavelengh (1.3 μm ) GaAs-Based Quantum-Dot Lasers," IEEE Photonicss Technology Letters, vol. 11, pp 301-303, 1999.
21. H. Hirayama, K. Matsunaga, M. Asada, and Y. Suematsu, "Lasing actioon of Ga0.67In0.33As/GaInAsP/InP tensile-strained quantum box lasers," Electron. Lett, vol. 30,pp. 142-143,1994.
22. P. Lls, M. Michel, A. Forchel, I. Gyuro, M. Klenk and E. Zielinski, "Fabrication and optical properties of InGaAs/InP quantum wires and dots with strong lateral quantization effects," J. Vac. Sci. Technol. B 11,pp. 2584-2587, 1993.
23. S. Lshida, Y. Arakawa, and K. Wada, "Seeded self-assembled GaAs quantum dots grown in two-dimensional V grooves by selective metal-organic chemical-vapor deposition," Appl. Phys. Lett, vol. 72, pp. 800-802, 1998.
24. P. Chen, Q. Xie, A. Madhukar, L. Chen, and Konkar, "Mechanisms of strained island formation in molecular-beam epitaxy of InAs on GaAs(100)," J. Vac. Sci. Technol. B, vol.12, pp. 2568-2573, 1994.
25. T. Marschner, L. Tapfer, N. Y. Jin-Phillipp, F. Phillipp, S. Lutgen, M. Volk, W. Stolz and E. O. Gogel, "Strain induced self organized grown of lateral periodic strained layer superlattices on off-oriented substrates by metalorganic vapour phase epitaxy," Solid-State Electron, vol. 40, pp. 819 , 1996.
26. F. Heinrichsdroff, M. H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov and P. Werner, "Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by chemical vapor deposition ," Appl. Phys. Lett. vol. 71, pp. 22-24, 1997.
27. F. C. Frank, and J. H. van der Merwe, Proc. Roy. Soc. London A, vol. 198, pp. 205, 1949.
28. M. Volmer, and A. Weber, Z. Phys. Chem., vol. 119, pp. 277, 1926.
29. I. N. Stranski, and L. Von Krastanov, Akad. Wiss Lit. Mainz Math.- Natur. K1. Iib, vol. 146, pp. 797, 1939.
30. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986).
31. D. Bimberg, N. N. Ledentsov, N. Kirstaedter, O. G. Schmidt, M. H. Mao, V.M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop'ev, Zh. I. Alferov, S. S. Ruvimov, U. Gosele, and J. Heydenreich, Phys. Stat. Sol. (b) 194, 159 (1996).
32. K. J. Vahala, "Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain," IEEE J. Quantum Electron, vol.24, pp. 523-530, 1988.
33. U. Bockelmann and G. Bastard, "Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases," Phys. Rev. B 42, pp. 8947-8957, 1990.
34. H. Benisy, C. M. Sotomayor-Torres and C. Weisbuch, "Intrinsic mechanism for the poor luminescence properties of quantum-box systems," Phys. Rev. B 44, pp. 10945-10948, 1991.
35. U. Bockelmann and T.Egeler, "Electron relaxation in quantum dots by means of Auger processes," Phys. Rev. B 46, pp. 15574-15577, 1992.
36. T. Inoshita and H. Sakaki, "Electron relaxation in a quantum dot: Significance of multiphonon processes," Phys. Rev. B 46, pp. 7260-7263, 1992.
37. U. Bockelmann, "Exciton relaxation and radiative recombination in semiconductor quantum dots," Phys. Rev. B 48, pp. 17637-17640, 1993.
38. S. Tarucha, "Transport in Quantum Dots: Observation of Atomlike Properties," MRS BULLETIN. Feb, pp. 49-53, 1998.
39. K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara,"Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection : Influence of phonon bottleneck," Appl. Phys. Lett, vol. 68, pp. 3013-3015, 1996.
40. Jeong-Sik Lee, Hong-Wen Ren, Shigeo Sugou, and Yasuaki Masumoto, "In0.5Ga0.5As quantum dot intermixing and evaporation in GaAs capping layer growth," J. Appl. Phys, vol. 84, pp. 6686-6688, 1998.
41. P. Bhattacharya, "Properties of lattice-matched and strained Indium Gallium Arsenide", pp. 73, INSPEC,the Institution of Electrical Engineers, 1993.
42. M. Sugawara, "Theory of spontaneous-emission lifetime of Wannier excitons in mesoscopic semiconductor quantum disks," Phys. Rev. b 51, pp. 10743-10754, 1995.
43. Z. Y. Xu, Z. D. Lu, Z. L. Yuan, X. P. Yang, B. Z. Zheng, J.Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang,"Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots," Superlattices and Microstructures, vol. 23, pp. 381-387,1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊