(54.236.58.220) 您好!臺灣時間:2021/02/27 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉立山
研究生(外文):Yeh, Li-San
論文名稱:不同氫濃度光纖光柵的機械強度
論文名稱(外文):Mechanical Strength of Fiber Bragg Gratings Loaded with Different Hydrogen Concerntrations
指導教授:王倫
指導教授(外文):Lon. A. Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:64
中文關鍵詞:力學強度韋伯分布
外文關鍵詞:mechanincal strengthWeibull distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們用擴散模型來描述氫氣擴散進入和出去光纖的變化過程。在1.24微米波長的吸收波峰,被用來做為各種氫氣濃度的指標。
我們使用動態疲乏測試來探討被紫外光照射之後的光纖力學強度。不同脈衝能量密度以及總照射量的KrF和ArF準分子雷射用來照射浸氫光纖。由此,我們可以得到布拉格光纖光柵的典型中等破壞強度以及它們韋伯分布的m值。

A diffusion model is used to describe the evolution of hydrogen diffusion into and out of an optical fiber. The absorption peak centered in 1.24 m wavelength is used as an indicator for various amounts of hydrogen concentration.
The mechanical strength of UV irradiated optical fiber has been investigated by using dynamic fatigue tests. KrF and ArF excimer lasers with different pulse energy densities and total doses are used to irradiate the hydrogenated optical fibers. The typical median breaking strength of fiber Bragg gratings and their m values of Weibull distribution are obtained.

Abstract(Chinese)I
Abstract(English)II
ContentsIII
Figures ListV
Tables ListVIII
Chapter 1 Introduction1
1.1 Fiber Bragg Grating Fabrication Methods1
1.2 Photosensitivity in Optical Fiber3
1.3 Mechanical Strength of Fiber Bragg Gratings4
Chapter 2 Characterization of Hydrogen-Loaded Fiber Bragg Grating
8
2.1 Spectra of Loaded and Non-Loaded Fibers 8
2.2 Diffusion Model for Hydrogen Loading Treatment9
2.3 Fabrication of Fiber Bragg Grating14
Chapter 3 Weibull Distribution23
3.1 Fiber Weakening23
3.2 Flaw Distribution24
Chapter 4 Mechanical Strengths of Optical Fibers Irradiated by UV Light
28
4.1 Experimental Conditions29
4.2 Strength of Fibers Loaded with Various Amounts Hydrogen
Concentration30
4.3 Strength of Fibers with Various Exposure Conditions in 248
and 193 nm30
4.4 Summary32
Chapter 5 Conclusion58
References59

Chapter 1
1. B. J. Eggleton, G. Lenz, N. Litchinitster, D. B. Patterson, and R. E. Slusher, “Implications of fiber grating dispersion for WDM communication sysytem,” IEEE Photonics Tech. Lett. 9(10), pp. 1403-1405, 1997.
2. James M. Battiato, T. F. Morse, and Raymond K. Kostuk, “Dual-wavelength common-cavity codoped fiber laser,” IEEE Photonics Tech. Lett. 9(7), pp. 913-915, 1997.
3. Kevin Hsu, Wei H. Loh, Liang Dong, and Calvin M. Miller, “Efficient and tunable Er/Yb fiber grating lasers,” J. Lightwave Technol. 15(8), pp. 1438-1441, 1997.
4. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, and J. Albert, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), pp. 1314-1316, 1994.
5. M. A. Davis, D. G. Bellemore, A. D. Kersey, M. A. Putnam, E. J. Friebele, and R. L. Idriss, M. Kodinduma, “High sensor-count Bragg grating instrumentation system for large-scale structural monitoring application,” SPIE 2718, pp. 303-309, 1996.
6. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loadings as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in Ge-doped optical fibers,” Electron. Lett. 29(13), pp. 1191-1193, 1993.
7. P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, V. Mizrahi, and K. S. Kranz, “Refractive-index changes in optical fibers sensitized with molecular hydrogen,” Proc. of Opt. Fiber Comm. TuL1, pp. 47-48, 1994.
8. K. O. Hill, B. Malo, F. Bilodeau, and D. C.Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, pp. 125-157, 1993.
9. Wang, Xiangyang Zha, Kaide Liao, Yanbiao Feng, Baohua Zhang Xiulan, “The formation of fiber Bragg grating by Fresnel prism and the study of sensing application,” Proceedings of SPIE 2895, pp. 367-373, 1996.
10. T. E. Tsai, G. M. Williams, and E. J. Friebele, “Index structure of fiber Bragg gratings in Ge-SiO2 fibers,” Opt. Lett. 22(4), pp. 224-226, 1997.
11. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. J. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, pp. 45-47, 1993.
12. L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Technol. Lett. 7, pp. 1048-1050, 1995.
13. L. Dong, J.-L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, “Bragg gratings written in Ce3+-doped fibers by a single excimer pulse,” Opt. Lett. 18(11), pp. 861-863, 1993.
14. L. Dong, J.-L. Archambault, E. Taylor, M. P. Roe, L. Reekie, and P. St. J. Russell, “Photosensitivity in tantalum doped silica optical fibers,” JOSA B 12(9), pp. 1747-1750, 1995.
15. A. Khalili, K. Kromp, “Statistical properties of Weibull estimators,” J. Mater. Sci. 26, pp. 6741-6752, 1991.
16. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), pp. 1035-1037, 1993.
Chapter 2
1.P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen : prediction of long-term loss increases,” Optical Eng., vol. 30, no. 6, pp. 780-788, 1991.
2. C. L. Liou, L. A. Wang, M. C. Shih, T. J. Chuang, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A 64, pp. 191-197, 1997.
3. J. Crank, “The mathematics of diffusion,” Oxford Univ. Press, chap. 5, 1975.
4. D. K. Lam, B. K. Garside, “Characterization of single-mode optical fiber filters,” Appl. Opt. 20, no. 3, pp. 440-445, 1981.
5. Pochi Yeh, “Optical waves in layered media,” John Wiley & Sons, Chapter 8, 1948.
Chapter 3
1. A. Hhalili, K. Kromp, “Statistical properties of Weibull estimators,” J. Materials Sci. 26, pp. 6741-6752, 1991.
2. H. G. Limberger, D. Varelas, R. P. Salathe, “Mechanical degradation of optical fibers induced by UV light,” SPIE 2841, pp. 84-93, 1996.
3. Griffith A. A., “The phenomena of rupture and flow in solids,” Mashinovedenie n 1, pp. 9-14, 1995.
4. Olshansky R. , Maurer D. R., “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, pp. 4497-4499, 1976.
5. Kurkjian C. R., Paek U. C., “Single valued strength of perfect silica fibers,” Appl. Phys. Lett. 42, pp. 251-253, 1983.
Chapter 4
1. Meltz G., W. W. M., W. H. G., “Formation of Bragg grating in optical fibers by a transverse holographic method,” Optics Letters 14, pp. 823-825, 1989.
2. Limberger H. G., Fonjallaz P. Y., Salathe R. P., “Spectral characterization of photoinduced high efficient Bragg gratings in standard telecommunication fibers,” Electronics letters 29, pp. 47-49, 1993.
3. Bilodeau F., Hill K. O.,Malo B., Johnson D. C., Albert J., “High-return-loss narowband all-fiber bandpass Bragg transmission filter,” IEEE Phot. Techn. Lett. 6, pp. 80-82, 1994.
4. Mizrahi V., Erdogan T., DiGiovanni D. J., Lemaire P. J., MacDonald W. M., Kosinski S. G., Cabot S., Sipe J. E., “Four channel fiber grating demultiplexer,” Electron. Lett. 30, pp. 780-781, 1994.
5. Zhang L., Sugden K., Williams J.A.R., Bennion I., Reid D.C.J., Ragdale C. M., “Postfabrication exposure of gap-type bandpass filters in broadly chirped fiber gratings,” Optics Letters 20, pp. 1927-1929, 1995.
6. Ball G. A., Morey W. W., Waters J. P., “Nd3+ fiber laser utilising intra-core Bragg reflectors,” Electron. Lett. 26, pp. 1829-1830, 1990.
7. D. Varelas, H. G. Limberger, R. P. Salathe, C. Kotrotsios, “UV-induced mechanical degradation of optical fiber,” Electro. Lett. 33, pp. 804-806, 1997.
8. R. Feced, M. P. Roe-Edwards, S. E. Kanellopoulos, N. H. Taylor, V. A. Handerek, “Mechanical strength degradation of UV exposed optical fibers,” Electro. Lett. 33, pp. 157-159, 1997.
9. Griffioen W., “Effect of nonlinear elasticity on measured fatigue data and lifetime estimations of optical fibers,” J. Am. Ceram. Soc. 75, pp. 2692-2696, 1992.
10. D. Varelas, H. G. Limberger, R. P. Salathe, “Enhanced mechanical performance of singlemode optical fibers irradiated by a CW UV laser,” Electro. Lett. 33, pp. 704-705, 1997.
11. C. G. Askins, M. A. Putnam, H. J. Patrick, E. J. Friebele, “Fiber strength unaffected by on-line writing of single-pulse Bragg gratings,” Electro. Lett. 33, pp. 1333-1334, 1997.
12. 郭建志, “光纖光柵感測器之力學行為研究,” 國立台灣大學土木工程學研究所碩士論文, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔