跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭玉慧
研究生(外文):Yu-Hui Cheng
論文名稱:NaPSS聚電解質溶液行為之探討
論文名稱(外文):The study of NaPSS polyelectrolyte solution behavior
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:105
中文關鍵詞:聚電解質黏度電導
外文關鍵詞:polyelectrolyteviscosityconductivity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究目的主要是利用黏度法和電導法來探討 Poly(Sodium4-Styrene sulfonate) (NaPSS) 聚電解質 ( polyelectrolyte ) 在水溶液中的熱力 ( thermodynamics ) 與遷移 ( transport ) 之行為特質。利用未含與含有低分子量電解質 (即小分子鹽類) 系統和不同分子量、磺酸化程度聚電解質水溶液之黏度和電導的變化來作為討論的基礎。
一般聚電解質溶液之行為主要掌控有三個主要因素: 一為濃度效應 (包括聚電解質的濃度與加入鹽類的濃度);二為分子鏈之形狀效應;三為分子間與分子內之靜電作用力。由分子量效應中,可得知於高分子量時分子構形所造成之效應大於低分子量,而在低分子量時靜電作用力成為主要的影響因素;藉由外加小分子鹽類的學習,可知隨著小分子鹽濃度的增加,抑制 counterion 解離的作用力亦會隨之增加,而當溶液中 counterion 的濃度改變的同時,分子鏈的構形和分子間的靜電作用力也會跟著改變;而不同的磺酸化程度造成了可解離的 counterion 數不同,故亦造成了溶液中不同的 counterion 濃度,進而改變了分子鏈的構形和分子間的靜電作用力。
於 semidilute regime,還原黏度與聚電解質濃度有一簡單的標度關係: 。利用本實驗室修正de Gennes 的黏度理論,發現NaPSS分子鏈於semidilute regime 中分子鏈的構形可由v值計算出來,而經由電導之討論中可得知由於分子量、加鹽量和磺酸化的不同會造成離子解離度的變化,當溶液中離子濃度改變時亦會造成分子鏈構形上的變化,故藉由構形與電導之關係式 於高分子量時可進一步證實其可信度,但於低分子量中則發現其誤差頗大。

The main purpose of this research thesis is to explore the thermodynamcis and transport characteristics of Poly(Sodium4-Styrene sulfonate) (NaPSS) aqueous solutions by using the viscometry and conductometry.
Generally, the behabior of polyelectrolyte solutions is affected by three main factors: 1. Viscosity effect (which includes the viscosity of the polyelectrolyte and the viscosity after salt is added). 2. Shape effects (the degree of difficulty of dispersion and migration). 3. The inter chain's and intra chain's electrostatic force. In different molecular weight case, the shape effects in high molecular weight samples are stronger than in low molecular weight samples. The main effect of low molecular weight samples is the electrostatic force. In salt-containing case , the inhibition of dissociation of counterion increase with salt concentration. While concentration of counterion change the shape and electrostatic force of polymer chain will be change. Different degree of sulfonation with different numbers of dissociation of counterions, so have different shape and electrostatic force of polymer chain.
In the semidilute regime, the reduced viscosity-concentration polts obeyed a simple scaling relation . Based on the de Gennes' scaling arguments, we have derived that the average enl-to-end distant of polyion chain, , can be estimated by x=(v+2)/(3v+3). The v increasing with increasing the flexibility of polyelectrolyte chains. In the disccission of conductivity, we will find that different molecular weight, salt concentration, and degree of sulfonation with different degree of dissociationof counterion. As the concentration of salt bee changed, the polymer chain shap will be changed. We made the equation x=x0+Bf to understnad the relation between x and f . Apparently, the equation is agreeable with the result in high molecular weight samples but isn't agreeable with the result in low moleculaar weihgt samples.

第一章 緒論 1
1.1 前言 1
1.2 聚電解質簡介 2
1.3 聚電解質之文獻回顧與理論發展 4
1.3.1 聚電解質溶液黏度理論與發展 4
1.3.2 聚電解質之內稟黏度的理論模擬與分子量之關連 9
1.3.3 半稀溶液中相關於濃度之黏度標度律之修正 11
1.3.4 聚電解質溶液電導理論與發展 12
1.3.4.1 聚電解質溶液之電導理論 14
1.4 本文目的 18
第二章 實驗部份 20
2.1 實驗材料 20
2.2 實驗儀器 21
2.3 實驗方法 23
2.3.1 透析袋純化 23
2.3.2 多分佈 NaPSS 純化 23
2.3.3 單分佈 NaPSS 之製備 24
2.3.4 分子量測定 25
2.3.5 溶液配製 26
2.3.6 黏度測量與分析 27
2.3.7 電導測量與分析 27
2.3.8 透析實驗 28
第三章 結果與討論 29
3.1 NaPSS聚電解水溶液之黏度行為探討 29
3.1.1 未加鹽 NaPSS聚電解質水溶液之黏度行為 29
3.1.2 加鹽對 NaPSS聚電解質水溶液之黏度行為的影響 34
3.1.3 不同磺酸化程度對NaPSS水溶液之黏度行為的響 37
3.2 NaPSS 聚電解質水溶液之電導行為 39
3.2.1 未加鹽 NaPSS聚電解質水溶液之電導行為 39
3.2.2 加鹽對 NaPSS聚電解質水溶液之電導行為的影響 41
3.2.3 不同磺酸化程度對NaPSS水溶液之電導行為的影響 43
3.3 NaPSS 聚電解質於溶液中之構形與相反離子凝結率關係性 44
3.3.1 分子量-構形-相反離子之關性性 44
3.3.2 磺酸化程度-構形-相反離子之相關性 46
第四章 結論 48
參考文獻 50
附錄一 97
附錄二 100

1 R. M. Fuoss and U. P. Strauss, Electrostatic interaction of
polyelectrolytes and simple electrolytes, J. Polym. Sci., 3,
603(1948).
2 J. Cohen, Z. Priel and Y. Rabin, Molecular weight
dependence of viscosity in dilute polyelectrolyte solutions:
the low salt limit, Polym. Commun., 29, 235(1988).
3 M. Nierlich, C. E. Williams, F. Boue, J. P. Cotton, M. Daoud,
B. Farnoux, G. Jannink, C. Picot, M. Moan, C. Wolff, M.
Rinaudo and P. G. de Gennes, Small angle neutron scattering
by semi-dilute solutions of polyelectrolyte, J. Phys.
(Paris), 40, 701(1979).
4 M. Drifford. and J. P. Dalbiez, Light scattering by dilute
solutions of salt-free polyelectrolyte, J. Chem. Phys. 88,
5368 (1984).
5 A. Katchalsky, Polyelectrolytes, Pure Appl. Chem., 2, 327
(1971).
6 P. W. M. Blom, M. J. M. de Jong and J. J. M. Vleggaar,
Electron and hole transport in poly(p-phenylenevinylene)
devices, Appl. Phys. Lett., 68, 3308(1996).
7 N. Saito, A remark on the hydrodynamical theory of the
viscosity of solutions of macromolecules, J. Phys. Soc. Jpn.,
7, 447(1952).
8 K. F. Feed and S. F. Edwards, Huggins coefficient for the
viscosity of polymer solutions, J. Chem. Phys., 62, 4032
(1975).
9 R. M. Fuoss and U. P. Strauss, Polyelectrolytes. III.
Viscosities of n-butyl bromide addition compounds of 4-
vinylpyridine styrene copolymers in nitromethane-dioxane
mixtures, J. Polym. Sci., 4, 96(1949).
10 D. P. Hodgson and E. J. Amis, Polyelectrolyte Science and
Technology, M. Hard, Ed., Marcel Dekker, NY, 1992, p.127.
11 J. Cohen, Z. Priel and Y. Rabin, Viscosity of dilute
polyelectrolyte solutions, J. Chem. Phys., 88, 7111(1988).
12 P. G. de Gennes, P. Pincus, R. M. Velasco and F. Brochard,
Remarks on polyelectrolyte conformation, J. Phys. (Paris),
37, 1461(1976).
13 T. Odijk, Possible scaling relations for semidilute
polyelectrolyte solutions, Macromolecules, 12, 688(1979).
14 A. V. Dobrynim, R. H. Colby and M. Rubinstein, Scaling
theory of polyelectrolyte solutions, Macromolecules, 28, 1859
(1995).
15 T. Odijk, Polyelectrolytes near the rod limit, J. Polym.
Sci., Polym. Phys. Ed., 15, 477(1977).
16 M. Muthukumar, Dynamics of polyelectrolyte solutions, J.
Chem. Phys., 107, 2619(1997).
17 M. Bohdanecky, Mark-Houwink-Kuhn-Sakurada exponent at the q
condition. Its invariancy with respect to the cross-
sectional dimensions of polymer chains, Macromolecules, 29,
2205(1996).
18 W. H. Stockmayer and M. Fixman, On the estimation of
unperturbed dimensions from intrinsic viscosities, J. Polym.
Sci., C, 1, 137(1963).
19 I. Noda, T. Tsuge and M. Nagasawa, The intrinsic viscosity
of polyelectrolytes, J. Phys. Chem., 74, 710(1970).
20 M. Yamaguchi, Y. Yamaguchi, Y. Matsushita and I. Noda,
Preparation and intrinsic viscosity of poly(N-methyl-2-
vinylpyridinium chloride) with narrow molecular weight
distributions, Polym. J., 22, 1077(1990).
22 R. M. Fouss, Electrical transport by polyelectrolytes, J.
Polym. Sci., 12, 185(1954)
23 G. S. Manning, A limiting law for the conductance of the rod
model of a salt-free polyelectrolyte solution, J. Phys.
Chem., 79, 262(1975).
24 G. S. Manning, Limiting laws and counterion condensation in
polyelectrolyte solutions. 7. Electrophoretic mobility and
conductance, J. Phys. Chem., 85, 1506(1981).
25 T. Onishi, N. Imai and F.Oosawa, Interaction between rod-
like polyelectrolytes, J. Phys. Soc. Jpn., 15, 896(1960).
26 F. Oosawa, Polyelectrolytes, Dekker: New York, 1971.
27 A. Schmitt, R. Varoqul and J. P. Meullenet, Ionic and
electrical conductances in polyelectrolyte solutions, J.
Phys. Chem., 81, 1514 (1977 ).
28 H. Vink, Electrolytic conductivfity of multicomponent
polyelectrolyte solutions, J. Chem. Soc., Faraday Trans. 1,
80, 507(1984).
29 S. Kawaguchi, T. Kitano, K. Ito and A. Minakata, Sodium ion
activity and electrical conductivity of poly(maleic acid)
and poly(isobutylene-alt- maleic acid) in aqueous salt-free
solution, Macromolecules, 24, 6335(1991).
30 M. Dentini, A. Barbetta, G. Masci, V. Crescenzi, D. Capitani
and A. L. Segre, Solution behavior of the poly[bis
(carboxylatophenoxy)phosphazene ], Macromolecules, 30, 7456
(1997).
31 C. Wandrey, Molecular mass and ionic strength dependence of
electrochemical properties of flexible polyelectrolytes,
Ber. Bunsenges. Phys. Chem., 100, 869(1996).
32 J. Szymczak, P. Holyk and P. Ander, Electrical conductivity
of aqueous solutions of monovalent salts of
polystyrenesulfonate, J. Phys. Chem., 79, 269(1975).
33 H. Vink, Conductivity of polyelectrolytes in very dilute
solutions, J. Chem. Soc., Faraday Trans. 1, 77, 2439(1981).
34 H. E. Rios, L. N. Sepulveda and C. I. Gamboa, Electrical
conductivity of cationic polyelectrolyte in aqueous
solution, J. Polym. Sci., Polym. Phys. Ed., 28, 505(1990).
35 R. H. Colby, D. C. Boris, W. E. krause and J. S. Tan,
Polyelectrolyte conductivity, J. Polym. Sci., Polym. Phys.
Ed., 35, 2951(1997).
36 G. S. Manning, Limiting laws and counterion condensation in
polyelectrolyte solutions I. Colligative properties, J.
Chem.
Phys., 51, 924(1969).
37 G. S. Manning, The critical onset of counterion
condensation: a survey of its experimental and theoretical
basis, Ber. Bunsenges, Phys. Chem., 100, 909(1996).
38 H. Vink, Conductivity of polyelectrolytes in very dilute
solutions, J. Chem. Soc., Faraday Trans. 1, 77, 2439(1981).
39 C. Wandrey, Molecular mass and ionic strength dependence of
electrochemical properties of flexible polyelectrolytes,
Ber. Bunsenges. Phys. Chem., 100, 869(1996).
40 J. Szymczak, P. Holyk and P. Ander, Electrical conductivity
of aqueous solutions of monovalent salts of
polystyrenesulfonate, J. Phys. Chem., 79, 269(1975).
41 H. Vink, Conductivity of polyelectrolytes in very dilute
solutions, J. Chem. Soc., Faraday Trans. 1, 77, 2439(1981).
42 H. E. Rios, L. N. Sepulveda and C. I. Gamboa, Electrical
conductivity of cationic polyelectrolyte in aqueous
solution, J. Polym. Sci., Polym. Phys. Ed., 28, 505(1990).
43 Hans Vink, A New Convenient Method for the Synthesis of Poly
(strenesulfonic acid), Makromol. Chem. 182, 279 (1981)
44 J. Yamanaka, H. Araie, H. Matsuoka, H. Kitano, N. Ise, T.
Yamaguchi, S. Saeki and M. Tsubokawa, Revisit to the
intrinsic viscosity-molecular relationship of ionic
polymers. 5. Further studies on solution viscosity of sodium
poly(styrenesulfonates), Macromolecules, 24, 6156(1991).
45 M. Rubinstein, R. H. Colby and A. V. Dobrynin, Dynamics of
semidilute polyelectrolyte solutions, Phys. Rev. Lett., 73,
2776(1994).
46 P. G. de Gennes, Scaling concepts in polymer physics,
Cornell University Press: Ithaca, London, 1976, p. 76.
47 T. A. Witten and P. Pincus, Structure and viscosity of
interpenetrating polyelectrolyte chains, Europhys. Lett., 3,
315(1987).
48 Y. Rabin, Anomalous viscosity of polyelectrolyte solutions,
Phys. Rev. A, 35, 3579(1987)
49 Y. Rabin, J. Cohen and Z. Priel, Viscosity of
polyelectrolyte solutions: the generalized Fuoss law, J.
Polym. Sci., Polym. Lett., 26, 397(1988).
50 J. Cohen, Z. Priel and Y. Rabin, Molecular weight dependence
of viscosity in dilute polyelectrolyte solutions: the low
salt limit, Polym. Commun., 29, 235(1988).
51 Mark J. Stevens and Kurt Kremer, The nature of flexible
linear polyelectrolytes in salt free solution: Amolecular
dynamics study, J.Chem. Phys., 103, 1169 (1995)
52 J. J. Tanahatoe and M. E. Kuil, J. Phys. Chem. B101, 5905
(1997)
53 Guseka Brodowski, Andreas Horvath, Matthias Ballauff, and
Mtthias Rehahn, Synthesis and Intrinsic Viscosity in Salt-
Free Solution of a Stiff-Chain Cationic Poly(p-phenylene)
Polyelectrolyte, Macromolecules, 29, 6962 (1996)
54 Kim, M. W. and Peiffer, D. G. to be published.
55 R. G. Barraza and H. E. Rios, Counterion association to
cationic polyelectrolytes in methanol/water mixtures, Polym.
Int., 38, 387(1995)
56 F. M. Tuffile and P. Ander, Electric transport for aqueous
solutions of sodium alginate and sodium polygalacturaonate,
Macromolecules, 8, 789 (1975).
57 K. F. Lin, S. N. Yang, H. L. Cheng and Y. H. Cheng,
Influence of Aggregation and dialysis on conductivity of
salt-free polyelectiolyte solution in dilute/semidilute
region, Submitted to Macromolecules(1998)
58 Atkins, P. W. Physical Chemistry, 5th ed.; Oxford University
Press: Oxford, 1994; Chapter 24.
59 H. L. Cheng, K. F. Ling, Scaling Configuration of
Polyxylylene Tetrahydrothiophenium Chloride
(Polyelectrolytes) in the Semidilute Regime by Viscometry,
Submitted to Macromolecules (1999).
21 鄭弘隆, 林金福, , PXT 聚電解質溶液行為探討, 高分子研討會, 75
(1999)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top