(54.236.58.220) 您好!臺灣時間:2021/03/01 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊志忠
研究生(外文):Chih-Chung Yang
論文名稱:氧化鋯膠體製程及其耐磨耗性研究
論文名稱(外文):The Study of Colloidal Dispersion/Casting of Zirconia and its Wear Resistance
指導教授:韋文誠韋文誠引用關係
指導教授(外文):wjwei
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:129
中文關鍵詞:膠粒製程乾壓成形法研磨抗折強度破壞韌性磨耗
外文關鍵詞:Y-TZPMg-PSZcolloidal processingdie-pressinggrindingflexural strengthfracture toughnesswear
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究利用膠粒製程及乾壓成形法製備添加氧化釔或氧化鎂相穩定劑的氧化鋯材料。燒結體的密度以阿基米德法測定之。研磨加工前、後及經熱處理的試片,其表面的單斜相含量則以XRD測定並以Toraya公式計算。研磨加工及磨耗測試後的表面型態,以掃描式電子顯微鏡(SEM)觀察。同時研磨加工過程中,正向力及切線力則以動力計記錄之。三點、四點抗折強度及破壞韌性分別測定後,再利用磨耗測試機來測定材料性質及測試參數對磨耗的影響。
TZPC及TZPD研磨加工面主要是以塑性變形為主的研磨機制,而PSZD的研磨加工面則以脆性破壞為主及少量的塑性變形的研磨機制。研磨加工過程中除正方晶相相變至單斜晶相,同時也觀察到鐵彈性疇域轉換及菱形晶相的生成。經熱處理後單斜晶相的含量會下降,但I(002)t/I(200)t的比值大於1,即鐵彈性疇域轉換機制為不可逆的相變。
TZPC試片的三點及四點抗折強度分別為785 MPa、韋伯模數11.8及723 MPa、 韋伯模數5.7。對於第二次的三點抗折測試,TZPC試片(取第一次的四點抗折強度測試後較長的樣品)強度由第一次的四點抗折強度641 MPa、韋伯模數8.6降為236 MPa、韋伯模數4.1。此結果顯示強度的下降可能是由於表面單斜晶相的增加或者是測試期間所造成的裂紋成長。
TZPC、TZPD及 PSZD試片以SENB法測得的破壞韌性分別為9.81.0 、7.61.0 及4.71.2 。然而,以壓痕破裂(IF)法所得的值與SENB法測得的破壞韌性值不一致,此結果顯示氧化鋯材料因具有較高的破壞韌性值因此不適合用壓痕破裂法來測定之。
磨耗測試結果顯示出TZPC的磨耗機制以塑性變形為主。此外將所測得的材料性質與磨耗率作圖時,吾人可發現磨耗率與材料性質的關係可由下式表之
其中Rw為磨耗率、Ko為常數、G為晶粒大小、KIC為破壞韌性、Hv為維式硬度而E為楊氏模數。此外氧化鋁的磨耗機制不同於氧化鋯,主要是以微破裂及晶粒拔出為主的磨耗型態。
關鍵字:膠粒製程、乾壓成形法、研磨、抗折強度、破壞韌性、磨耗
Abstract
In this study, yttria-doped zirconia and magnesia-doped zirconia (Mg-PSZ) powders were used to prepare samples by using colloidal processing/pressure casting and die-pressing methods. The sintered density of Mg-PSZ and Y-TZP sample was measured by Archimedes’ method. The amount of m-phase of as-sintered, ground and annealed samples were determined by quantitative X-Ray diffractometry (XRD) using Toraya’s equation. The morphologies of ground and worn surfaces were examined by scanning electron microscopy (SEM). The normal and tangential forces during surface grinding were recorded by using dynanometer. The 3-point, 4-point flexural strength measurements (including first and second bending), fracture toughness were completed. The wear test was performed by a wear tester to investigate the dependence of material properties and testing parameters on the wear resistance of various materials.
The relative density of TZPC, TZPD, PSZC and PSZD were measured to be 99.8 %, 99.7%, ∼90 % and 99.5%, respectively. The morphologies of ground surface of TZPC and TZPD observed by SEM show a grinding mechanism of major plastic deformation. However, the surface of ground PSZD shows mainly brittle fracture and occasionally plastic deformation. The m-phase content of ground samples increases at the same time. Furthermore, the t-to-m phase transformation, ferroelastic domain switching and r-phase formation were also observed. After hear treatment, the amount of m-phase decreases. But the ratio of I(002)t/I(200)t remains greater than unity, implying the ferroelastic domain switching mechanism is irreversible. During grinding, the normal and tangential forces basically increase with increasing depth of cut from greater speed to lower one.
The 3-point and 4-point flexural strengths of TZPC were 785 MPa with m = 11.8 and 723 MPa with m = 5.7, respectively. For the second 3-point bending strength of the TZPC samples which were obtained from the 4-point bend bars been tested once, the first 4-point flexural strength of the TZPC is 641 MPa with m = 8.6 and reduced to 236 MPa with m = 4.1 for the second 3-point bending test. The results of the second test imply that the reduction of strength is due to either the increment of m-phase on stressing surface or the crack extension during the bending test.
The fracture toughness of TZPC, TZPD, and PSZD measured by single-edge-notched-beam (SENB) method were 9.8±1.3 , 7.6±1.0 and 4.7±1.2 , respectively. However, the value of fracture toughness measured by indentation fracture (IF) method seems to be inconsistent with the value obtained by SENB technique. In other words, the IF method isn’t an appropriate method to measure samples with high toughness.
The wear results show that the morphologies of worn surface of the TZPC exhibit major plastic deformation. The dependence of intrinsic material properties and testing parameters on the wear resistance is very complicated. The results show that the wear rate is proportional to where G is the average grain size, KIC is the fracture toughness, Hv is the Vickers’ hardness and E is the Young’s modulus. Furthermore, the wear mechanism of Al2O3 is different from that of TZPC. For Al2O3, the material removal mechanism is microfracturing plus minor grain pull-out. However, the wear mechanism of TZPC is plastic deformation and wear debris reattachment.
Key words: Y-TZP, Mg-PSZ, colloidal processing, die-pressing, grinding, flexural strength, fracture toughness, wear
Content
Chapter 1 Introduction and Objectives1
Chapter 2 Literature review3
2.1 Zirconia Materials3
2.1.1 Magnesia-Partially Stabilized Zirconia (Mg-PSZ)4
2.1.2 Yttria-Tetragonal Zirconia Polycrystals (Y-TZP)6
2.2 Biomedical Applications of Zirconia8
2.3 Mechanical Property9
2.3.1 Flexural Strength 9
2.3.2 Weibull Statistical Distribution12
2.3.3 Fracture Toughness13
2.4 Wear14
2.4.1 Hardness and Toughness15
2.4.2 Thermal Conductivity16
2.4.3 Microstructure17
Chapter 3 Experimental Procedure21
3.1 Materials21
3.2 Sample Preparation21
3.2.1 Colloidal Dispersion/Casting of Y-TZP and Mg-PSZ21
3.2.2 Die-Pressing of Y-TZP and Mg-PSZ25
3.3 Sintering 28
3.3.1 Mg-PSZ28
3.3.2 Y-TZP28
3.4 Machining 28
3.5 Heat Treatment29
3.6 Property Measurement29
3.6.1 Particle Size Distribution29
3.6.2 Density30
3.6.3 XRD30
3.6.4 Surface Roughness31
3.6.5 SEM Observation31
3.6.6 Measurement of Normal and Tangential Force33
3.6.7 Measurement of Flexural Strength 33
3.6.8 Measurement of Fracture Toughness34
3.6.9 Wear Test35
Chapter 4 Results and Discussion37
4.1 Starting Materials37
4.2 Surface Grinding by Diamond Wheel 37
4.2.1 The Observation of Machined Morphologies 37
4.2.2 Effects of Machining on Phase Transformation44
4.2.3 Measurement of Normal and Tangential Forces during Grinding52
4.3 Mechanical Properties 62
4.3.1 Four-Point Flexural Strength and Weibull Modulus62
4.3.2 Three-Point Flexural Strength and Weibull Statistics74
4.4 Fracture Toughness78
4.4.1 Single-Edge-Notched-Beam (SENB)78
4.4.2 Indentation Fracture (IF)82
4.5 Wear Performances87
4.5.1 The Dependence of Grain Size on Y-TZP87
4.5.2 The Influence of Testing Parameters91
4.5.3 The Wear Comparison between TZP and Al2O3103
4.5.4 Relationship between Material Properties and Testing Parameters108
Chapter 5 Conclusion 112
References115
Appendix 121
References
1. Hannink and M. V. Swain, “Progress in transformation toughening of ceramics,” Annu. Rev. Mater. Sci.1994 24:359-408
2. Heuer, “Transformation toughening in ZrO2-containing ceramics,” J. Am. Ceram. Soc., 70 [10] pp. 689-98 (1987)
3. Subbarao, “Zirconia-an overview,” in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, ed. by A. H. Heuer and L. W. Hobbs (1981) pp.1-24
4. 杜正恭, “氧化鋯”, 陶瓷技術手冊, pp. 716-44 (1994)
5. “Phase diagram for ceramics,” ed. by M. K. Reser, Am. Ceram. Soc., (1975) Columbus, Ohio
6. Kisi, “Influence of hydrostatic pressure on the t→o transformation in Mg-PSZ studied by in situ neutron diffraction,” J. Am. Ceram. Soc.,81 [3] pp. 741-45 (1998)
7. Nakanishi and T. Shigematsu, “Martensitic transformations in zirconia ceramics,” Mater. Trans., JIM, 33 [3] pp. 318-23 (1992)
8. Hench, “Bioceramics,” J. Am. Ceram. Soc., 81 [7] pp. 1705-28 (1998)
9. Mansur, M. Pope, M. R. Pascucci and S. Shivkumar, “Zirconia-calcium phosphate composites for bone replacement,” Ceram. Intern. 24 (1998) pp. 77-79
10. Cales, Y. Stefani, and E.Lilley, “Long-term in vivo and in vitro aging of a zirconia ceramic used in orthopaedy,” J. Biom. Mat. Res., Vol.28, pp. 619-624 (1994)
11. Shimizu, M. Oka, P. Kumar, Y. Kotoura, T. Yamamuro, K. Makinouchi, and T. Nakamura, “Time-dependent changes in the mechanical properties of zirconia ceramic,” J. Biom. Mat. Res., Vol. 27, pp. 729-34 (1993)
12. Kasuga, M. Yoshida, A. J. Ikushma, M.Tuchiya and H. Kusakari, “Stability of zirconia-toughened bioactive glass-ceramic: in vivo study using dogs,” J. Mat. Sci.: Materials in Medicine 4 (1993) pp. 36-39
13. Mandrino, R. Eloy, B. Moyen, J. L. Lerat and D. Treheux, “Base alumina ceramics with dispersoids: mechanical behavior and tissue response after in vivo implantation,” J. Mat. Sci.: Materials in Medicine 3 (1992) pp. 457-463
14. Thompson and R. D. Rawlings, “Mechanical behavior of zirconia and zirconia-toughened alumina in a simulated body environment”, Biomaterials, Vol. 11 (1990) pp.505-508
15. Christel, A. Meunier, M. Heller, J. P. Torre and C. N. Peille, “Mechanical properties and short-term in-vivo evalution of yttrium-oxide-partially-stabilized zirconia,” J. Biom. Mat. Res., Vol. 23, 45-61 (1989)
16. Drumond, “In vitro aging of yttria-stabilized zirconia”, J. Am. Ceram. Soc., 72 [4] 675-76 (1989)
17. 劉緒東,黃昌偉, “陶瓷材料機械特性及檢測”, 陶瓷技術手冊, pp. 190-223 (1994)
18. Roy and G. R. Gouda, “Porosity-strength relation in cementitious materials with very high strengths”, J. Am. Ceram. Soc., Vol. 56, No. 10 (1973) pp. 549-60
19. Carniglia, “Data fitting to new strength-grain size-porosity functions for ceramics”, J. Am. Ceram. Soc., Vol. 56, No. 10 (1973) pp. 547
20. Passmore, R. M. Spriggs and T. Vasilos, “Strength-grain size-porosity relations in Alumina”, J. Am. Ceram. Soc., Vol. 48, No. 1 (1965) pp. 1-7
21. Spriggs, J. b. Mitchell and T. Vasilos, “Mechanical properties of pure, dense aluminum oxide as a function of temperature and grain size”, J. Am. Ceram. Soc., Vol. 47, No. 7 (1964) pp.323-27
22. Papargyris, “Estimator type and population size for estimating the Weibull modulus in ceramics”, J. Eur. Ceram. Soc., 18 (1998) pp. 451-55
23. Fernandes, C. Pacheco Da Silva, L. Guerra Rosa and C. Saraiva Martins, “Effects of surface roughness on the flexural strength of a hardmetal”, J. Mater. Sci., 29 (1994) pp. 2008-12
24. Lok and T. C. Lee, “Processing of advanced ceramics using the wire-cut EDM process”, J. Mater. Processing Tech. 63 (1997) pp. 839-43
25. Zhang, T. C. Lee, X. Ai and W. S. Lau, “Investigation of the surface integrity of laser-cut ceramic”, J. Mater. Processing Tech. 57 (1996) pp. 304-10
26. Fujii and T. Nose, “Evaluation of fracture toughness for ceramic materials”, IJIS Intern. Vol. 29, No. 9 (1989) pp. 717-25
27. Jack D. Sibold, “ Wear applications,” Engineering Materials Handbook, Vol. 4 (1991) pp. 973-977
28. Tragott E. Fisher, “Friction and wear of ceramics”, Scripta Metallurgica, Vol. 24, pp.833-838 (1990)
29. Donald H. Buckley, “Tribological properties of structural ceramics”, pp. 293-365 in Treatise on Materials Science and Technology, Vol. 29, ed. by John B. Wachtman, Jr
30. ASTM G40-96
31. Evans and D. B. Marshall, “Wear mechanisms in ceramics”, pp.439-452 in Fundamentals of Friction and Wear of Materials, ed. by David A. Rigney
32. He, L. Winnubst, A. J. Burggraaf and H. Verweij, “Influence of porosity on friction and wear of tetragonal zirconia polycrystal”, J. Am. Ceram. Soc. 80 [2] pp. 377-80 (1997)
33. He, L. Winnubst, A. J. Burggraaf and H. Verweij, “Grain-size dependence of sliding wear in tetragonal zirconia polycrystals,” J. Am. Ceram. Soc., 79 [12] pp. 3090-96 (1996)
34. Mark Rainforth, “The sliding wear of ceramics,” Ceram. Intern., 22 (1996) pp. 365-372
35. Lin Zhou, Yi-Min Gao, Jing-En Zhou and Qing-De Zhou, “Unlubricated sliding wear mechanism of fine ceramics Al2O3 and ZrO2 against high chromium cast iron,” Wear, 176 (1994) pp. 39-48
36. Wang, F. J. Worzala and A. R. Lefkow, “Friction and wear properties of partially stabilized zirconia with solid lubricant,” Wear, 167 (1993) pp. 23-31
37. Stachowiak and G. B. Stachowiak, “Environmental effects on wear and friction of toughened zirconia ceramics,” Wear, 160 (1993) pp. 153-162
38. Wang and C. A. Leach, “Friction and wear characteristic of binary and ternary zirconia ceramics,” J. Mater. Sci., 27 (1992) pp. 5441-44
39. 何方元 (F. Y. Ho), “釔安定化正方氧化鋯膠粒製程與燒結體性質研究”, 碩士論文 (1997)
40. Robert C. Weast and Samuel M. Selby, “Handbook of Chemistry and Physics”, 48th edition (1968)
41. David R. Lide and H. P. R. Frederikse, “Handbook of Chemistry and Physics”, 75th edition (1994-1995)
42. H. Toraya, M. Yoshimura and S. Somiya, “Zirconia Ceramic”, Vol. 2, pp. 53-59, edited by S. Somiya and U. Rokakuho, Tokyo, Japan,1984
43. 吳琅,唐敏注, “陶瓷材料的物理和化學特性及其檢測,”陶瓷技術手冊,(1996)pp.244
44. H. Nishitani and K. Mori, “Influence of supporting conditons on stress intensity factors for single-edge-cracked specimens under bending”, Tech. Reports of the Kyushu Univ., Vol. 58, No. 5 (1985) pp. 751-55
45. H. Nishitani, K. Mori and H. Noguchi, “Analysis of single-edge-cracked specimen under three- or four-point bending by body force doublet method”, Trans. Japan Soc. Mech. Engrs., Vol. 52, No. 474 (1986), pp.539-43
46. A. G. Evans and E. A. Charles, “ Fracture Toughness Determinations by Indentation,” J. Am. Ceram. Soc., Vol. 59, No. 7-8, pp. 371-72, (1976)
47. A. G. Evans, “Fracture mechanics applied to brittle materials”, ed. by S. W. Freiman, ASTM STP 689, pp.112 (1979)
48. J. Lankford, “Indentation microstructure in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method”, J. Mater. Sci. Letters 1,pp. 493-95 (1982)
49. Niihara, R. Morena and D. P. H. Hasselman, “Evaluation of K1c of brittle solids by the indentation method with low crack-to-indent ratios”, J. Mater. Sci. Letters, pp. 13-16 (1982)
50. Shetty, I. G. Wright, P. N. Mincer and A. H. Clauer, “Indentation of fracture of WC-Co cermets”, J. Mater. Sci. Vol. 20, pp. 1873-82 (1985)
51. Lawn, A. G. Evans and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc., Vol. 63, No. 9-10, pp. 574-81 (1980)
52. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements”, J. Am. Ceram. Soc., Vol. 64, No. 9, pp. 533-38 (1981)
53. 林育平, 級配氧化鋯之射出成形特性及其機械性質之探討 , 碩士論文,台灣大學材料科學與工程研究所(1997).
54. 林有均, “ ,” 碩士論文,逢甲大學材料科學與工程研究所(1997).
55. Kim, H. J. Jung and H. J. Kim, “t→r phase transformation of tetragonal zirconia alloys by grinding”, J. Mat. Sci. Lett., 14 (1995) pp. 285-88
56. Hasegawa, “Rhombohedral phase produced in abraded surfaces of partially stabilized zirconia (PSZ)”, J. Mat. Sci. Lett., 2 (1983) pp. 91-93
57. Virkar, L. K. Matsumoto, “Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia”, J. Am. Ceram. Soc., 69 [10] C-224-C-226 (1986)
58. Tragott E. Fischer, “Friction and Wear of Ceramics,” Scripta Metallurgica, Vol. 24, pp. 833-838, (1990)
59. 林江財, ‘搧硎c陶瓷在磨耗上的應用,“鰹ⅶP社會,第84期12月,pp.52-56, (1993).
60. Donald H. Buckley, “Tribological Properties of Structural Ceramics,”pp. 293-365 in Treatise on Materials Science and Technology ,Vol. 29. Edited by John B. Wachtman, Jr.
61. E. Hines Jr., R.C. Bradt and J.V. Biggers, “Grain Size and Porosity Effects on the Abrasive Wear of Alumina,”pp. 462-67 in Wear of Materials, Edited by W. A. Glaeser, K.C. Ludema and S. K. Rhee,1977.
62. Y. He, L. Winnubst, A. J. Burggraaf and H. Verweij, “Influence of Porosity on Friction and Wear of Tetragonal Zirconia Poly-crystal,” J. Am. Ceram. Soc., 80 [2] 377-80 (1997).
63. M. Yoshimura, T. Noma, “Role of H2O on the degradation process of Y-TZP,” J. Mater. Sci. Lett., 6, 455-67 (1987).
64. K. H. Zum Gahr, W. bundschuh and B. Zimmerlin, “Effect of grain size on friction and sliding wear of oxide ceramics,” Wear, 162-164, 269-79 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔