References
1. Hannink and M. V. Swain, “Progress in transformation toughening of ceramics,” Annu. Rev. Mater. Sci.1994 24:359-408
2. Heuer, “Transformation toughening in ZrO2-containing ceramics,” J. Am. Ceram. Soc., 70 [10] pp. 689-98 (1987)
3. Subbarao, “Zirconia-an overview,” in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, ed. by A. H. Heuer and L. W. Hobbs (1981) pp.1-24
4. 杜正恭, “氧化鋯”, 陶瓷技術手冊, pp. 716-44 (1994)
5. “Phase diagram for ceramics,” ed. by M. K. Reser, Am. Ceram. Soc., (1975) Columbus, Ohio
6. Kisi, “Influence of hydrostatic pressure on the t→o transformation in Mg-PSZ studied by in situ neutron diffraction,” J. Am. Ceram. Soc.,81 [3] pp. 741-45 (1998)
7. Nakanishi and T. Shigematsu, “Martensitic transformations in zirconia ceramics,” Mater. Trans., JIM, 33 [3] pp. 318-23 (1992)
8. Hench, “Bioceramics,” J. Am. Ceram. Soc., 81 [7] pp. 1705-28 (1998)
9. Mansur, M. Pope, M. R. Pascucci and S. Shivkumar, “Zirconia-calcium phosphate composites for bone replacement,” Ceram. Intern. 24 (1998) pp. 77-79
10. Cales, Y. Stefani, and E.Lilley, “Long-term in vivo and in vitro aging of a zirconia ceramic used in orthopaedy,” J. Biom. Mat. Res., Vol.28, pp. 619-624 (1994)
11. Shimizu, M. Oka, P. Kumar, Y. Kotoura, T. Yamamuro, K. Makinouchi, and T. Nakamura, “Time-dependent changes in the mechanical properties of zirconia ceramic,” J. Biom. Mat. Res., Vol. 27, pp. 729-34 (1993)
12. Kasuga, M. Yoshida, A. J. Ikushma, M.Tuchiya and H. Kusakari, “Stability of zirconia-toughened bioactive glass-ceramic: in vivo study using dogs,” J. Mat. Sci.: Materials in Medicine 4 (1993) pp. 36-39
13. Mandrino, R. Eloy, B. Moyen, J. L. Lerat and D. Treheux, “Base alumina ceramics with dispersoids: mechanical behavior and tissue response after in vivo implantation,” J. Mat. Sci.: Materials in Medicine 3 (1992) pp. 457-463
14. Thompson and R. D. Rawlings, “Mechanical behavior of zirconia and zirconia-toughened alumina in a simulated body environment”, Biomaterials, Vol. 11 (1990) pp.505-508
15. Christel, A. Meunier, M. Heller, J. P. Torre and C. N. Peille, “Mechanical properties and short-term in-vivo evalution of yttrium-oxide-partially-stabilized zirconia,” J. Biom. Mat. Res., Vol. 23, 45-61 (1989)
16. Drumond, “In vitro aging of yttria-stabilized zirconia”, J. Am. Ceram. Soc., 72 [4] 675-76 (1989)
17. 劉緒東,黃昌偉, “陶瓷材料機械特性及檢測”, 陶瓷技術手冊, pp. 190-223 (1994)
18. Roy and G. R. Gouda, “Porosity-strength relation in cementitious materials with very high strengths”, J. Am. Ceram. Soc., Vol. 56, No. 10 (1973) pp. 549-60
19. Carniglia, “Data fitting to new strength-grain size-porosity functions for ceramics”, J. Am. Ceram. Soc., Vol. 56, No. 10 (1973) pp. 547
20. Passmore, R. M. Spriggs and T. Vasilos, “Strength-grain size-porosity relations in Alumina”, J. Am. Ceram. Soc., Vol. 48, No. 1 (1965) pp. 1-7
21. Spriggs, J. b. Mitchell and T. Vasilos, “Mechanical properties of pure, dense aluminum oxide as a function of temperature and grain size”, J. Am. Ceram. Soc., Vol. 47, No. 7 (1964) pp.323-27
22. Papargyris, “Estimator type and population size for estimating the Weibull modulus in ceramics”, J. Eur. Ceram. Soc., 18 (1998) pp. 451-55
23. Fernandes, C. Pacheco Da Silva, L. Guerra Rosa and C. Saraiva Martins, “Effects of surface roughness on the flexural strength of a hardmetal”, J. Mater. Sci., 29 (1994) pp. 2008-12
24. Lok and T. C. Lee, “Processing of advanced ceramics using the wire-cut EDM process”, J. Mater. Processing Tech. 63 (1997) pp. 839-43
25. Zhang, T. C. Lee, X. Ai and W. S. Lau, “Investigation of the surface integrity of laser-cut ceramic”, J. Mater. Processing Tech. 57 (1996) pp. 304-10
26. Fujii and T. Nose, “Evaluation of fracture toughness for ceramic materials”, IJIS Intern. Vol. 29, No. 9 (1989) pp. 717-25
27. Jack D. Sibold, “ Wear applications,” Engineering Materials Handbook, Vol. 4 (1991) pp. 973-977
28. Tragott E. Fisher, “Friction and wear of ceramics”, Scripta Metallurgica, Vol. 24, pp.833-838 (1990)
29. Donald H. Buckley, “Tribological properties of structural ceramics”, pp. 293-365 in Treatise on Materials Science and Technology, Vol. 29, ed. by John B. Wachtman, Jr
30. ASTM G40-96
31. Evans and D. B. Marshall, “Wear mechanisms in ceramics”, pp.439-452 in Fundamentals of Friction and Wear of Materials, ed. by David A. Rigney
32. He, L. Winnubst, A. J. Burggraaf and H. Verweij, “Influence of porosity on friction and wear of tetragonal zirconia polycrystal”, J. Am. Ceram. Soc. 80 [2] pp. 377-80 (1997)
33. He, L. Winnubst, A. J. Burggraaf and H. Verweij, “Grain-size dependence of sliding wear in tetragonal zirconia polycrystals,” J. Am. Ceram. Soc., 79 [12] pp. 3090-96 (1996)
34. Mark Rainforth, “The sliding wear of ceramics,” Ceram. Intern., 22 (1996) pp. 365-372
35. Lin Zhou, Yi-Min Gao, Jing-En Zhou and Qing-De Zhou, “Unlubricated sliding wear mechanism of fine ceramics Al2O3 and ZrO2 against high chromium cast iron,” Wear, 176 (1994) pp. 39-48
36. Wang, F. J. Worzala and A. R. Lefkow, “Friction and wear properties of partially stabilized zirconia with solid lubricant,” Wear, 167 (1993) pp. 23-31
37. Stachowiak and G. B. Stachowiak, “Environmental effects on wear and friction of toughened zirconia ceramics,” Wear, 160 (1993) pp. 153-162
38. Wang and C. A. Leach, “Friction and wear characteristic of binary and ternary zirconia ceramics,” J. Mater. Sci., 27 (1992) pp. 5441-44
39. 何方元 (F. Y. Ho), “釔安定化正方氧化鋯膠粒製程與燒結體性質研究”, 碩士論文 (1997)40. Robert C. Weast and Samuel M. Selby, “Handbook of Chemistry and Physics”, 48th edition (1968)
41. David R. Lide and H. P. R. Frederikse, “Handbook of Chemistry and Physics”, 75th edition (1994-1995)
42. H. Toraya, M. Yoshimura and S. Somiya, “Zirconia Ceramic”, Vol. 2, pp. 53-59, edited by S. Somiya and U. Rokakuho, Tokyo, Japan,1984
43. 吳琅,唐敏注, “陶瓷材料的物理和化學特性及其檢測,”陶瓷技術手冊,(1996)pp.244
44. H. Nishitani and K. Mori, “Influence of supporting conditons on stress intensity factors for single-edge-cracked specimens under bending”, Tech. Reports of the Kyushu Univ., Vol. 58, No. 5 (1985) pp. 751-55
45. H. Nishitani, K. Mori and H. Noguchi, “Analysis of single-edge-cracked specimen under three- or four-point bending by body force doublet method”, Trans. Japan Soc. Mech. Engrs., Vol. 52, No. 474 (1986), pp.539-43
46. A. G. Evans and E. A. Charles, “ Fracture Toughness Determinations by Indentation,” J. Am. Ceram. Soc., Vol. 59, No. 7-8, pp. 371-72, (1976)
47. A. G. Evans, “Fracture mechanics applied to brittle materials”, ed. by S. W. Freiman, ASTM STP 689, pp.112 (1979)
48. J. Lankford, “Indentation microstructure in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method”, J. Mater. Sci. Letters 1,pp. 493-95 (1982)
49. Niihara, R. Morena and D. P. H. Hasselman, “Evaluation of K1c of brittle solids by the indentation method with low crack-to-indent ratios”, J. Mater. Sci. Letters, pp. 13-16 (1982)
50. Shetty, I. G. Wright, P. N. Mincer and A. H. Clauer, “Indentation of fracture of WC-Co cermets”, J. Mater. Sci. Vol. 20, pp. 1873-82 (1985)
51. Lawn, A. G. Evans and D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc., Vol. 63, No. 9-10, pp. 574-81 (1980)
52. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements”, J. Am. Ceram. Soc., Vol. 64, No. 9, pp. 533-38 (1981)
53. 林育平, 級配氧化鋯之射出成形特性及其機械性質之探討 , 碩士論文,台灣大學材料科學與工程研究所(1997).54. 林有均, “ ,” 碩士論文,逢甲大學材料科學與工程研究所(1997).
55. Kim, H. J. Jung and H. J. Kim, “t→r phase transformation of tetragonal zirconia alloys by grinding”, J. Mat. Sci. Lett., 14 (1995) pp. 285-88
56. Hasegawa, “Rhombohedral phase produced in abraded surfaces of partially stabilized zirconia (PSZ)”, J. Mat. Sci. Lett., 2 (1983) pp. 91-93
57. Virkar, L. K. Matsumoto, “Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia”, J. Am. Ceram. Soc., 69 [10] C-224-C-226 (1986)
58. Tragott E. Fischer, “Friction and Wear of Ceramics,” Scripta Metallurgica, Vol. 24, pp. 833-838, (1990)
59. 林江財, ‘搧硎c陶瓷在磨耗上的應用,“鰹ⅶP社會,第84期12月,pp.52-56, (1993).
60. Donald H. Buckley, “Tribological Properties of Structural Ceramics,”pp. 293-365 in Treatise on Materials Science and Technology ,Vol. 29. Edited by John B. Wachtman, Jr.
61. E. Hines Jr., R.C. Bradt and J.V. Biggers, “Grain Size and Porosity Effects on the Abrasive Wear of Alumina,”pp. 462-67 in Wear of Materials, Edited by W. A. Glaeser, K.C. Ludema and S. K. Rhee,1977.
62. Y. He, L. Winnubst, A. J. Burggraaf and H. Verweij, “Influence of Porosity on Friction and Wear of Tetragonal Zirconia Poly-crystal,” J. Am. Ceram. Soc., 80 [2] 377-80 (1997).
63. M. Yoshimura, T. Noma, “Role of H2O on the degradation process of Y-TZP,” J. Mater. Sci. Lett., 6, 455-67 (1987).
64. K. H. Zum Gahr, W. bundschuh and B. Zimmerlin, “Effect of grain size on friction and sliding wear of oxide ceramics,” Wear, 162-164, 269-79 (1993).