(3.237.234.213) 您好!臺灣時間:2021/03/09 11:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李柏翰
研究生(外文):Po Han Lee
論文名稱:渾沌亂數產生器之渾沌串流加密器的完成
論文名稱(外文):Implementation of chaotic stream ciphers using chaotic pseudo-random number generator
指導教授:陳義裕陳義裕引用關係
指導教授(外文):Yih Yuh Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
中文關鍵詞:渾沌式串流加密器擬亂數產生器渾沌統計測試同步渾沌式串流加密器密碼系統線性同餘遞迴秘密金鑰
外文關鍵詞:chaotic stream cipherspseudo-random number generatorchaosstatistical testssynchronizationCSC cryptosystemlinear congruential recurrencesecret key
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
密碼系統一般可分為區塊加密器(block ciphers)和串流加密器(stream ciphers)兩種。在此,使用渾沌系統之擬亂數產生器的渾沌式串流加密器(chaotic stream ciphers)已經被提出。一個渾沌式的動力系統意謂著在相空間中的數值軌跡演化會展現非週期性、複雜、和對初值敏感的現象。根據Lorenz系統的渾沌性質,我們詳述一個簡單的亂數產生器。利用適當的模運算處理, Lorenz系統產生之亂數可用來當作加解密金鑰(key)。在本篇論文中,我們將示範利用線性同餘方式產生亂數是不安全的,並且分析Logistic映射之安全性。透過統計測試的方式,且和Rong He及P.G. Vaidya 兩位學者所提出的密碼系統作比較,我們發現使用Lorenz系統的渾沌式串流加密器(CSC)有容易完成、高隱密性、高效率、安全性高可抵抗竊密者等優點。

Cryptographic systems are generally classified into block and stream ciphers.The cryptosystem CSC, chaotic stream ciphers, of combining a pseudo-random number generator of chaotic system with classic cryptography has been presented. A chaotic dynamical system means that the numerical trajectory in the phase space exhibits the phenomenon of aperiodic, complicated,
and sensible dependence on initial conditions. We describe a simple random number generator based on the chaotic property of the Lorenz system. The random numbers generated by the Lorenz system can be used as secret keys for encryption and decryption after suitable modulo operations have been applied. In this thesis, we will illustrate that the linear congruential recur-
rence is not secure and also analyze the secrecy of the logistic map. Through statistical tests, the CSC cryptosystem using chaotic Lorenz system as compared to that developed by Rong He and P.G. Vaidya has the advantages of easy implementation, good privacy, efficiency, and is robust against intruder.

Contents
1 Introduction 1
1.1 Cryptography . . . 1
1.2 Chaotic cryptosystem . . . 5
1.3 Organization of this work . . . 6
2 The pseudo-random number generator 7
2.1 Introduction . . . 7
2.2 The linear congruential pseudo-random number generators . 9
2.3 The statistical tests of random number generators . . . 9
2.4 The theoretical analysis of statistical random number
generator tests . . . 21
3 The Lorenz equation and its potential use for encryption 26
3.1 Introduction 26
3.2 Derivation of the Lorenz equation . . . 27
3.3 One point of view for extracting messages masked by chaos 38
3.4 The pseudo-random number generator using Lorenz equation 43
4 The CSC cryptosystem 71
4.1 Introduction . . . 71
4.2 The algorithm to encrypt and decrypt . . . 72
5 Conclusion 85

Bibliography
[1] Data Encryption Standard, FIPS PUB 46, National Bureau of Standard. Washington D. C., pp. 59-74, 1977.
[2] W. Diffie and M. E. Hellman. New direction in cryptography. IEEE Trans. on inform. Theory, IT-22, pp. 644-654, 1976.
[3] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems . Commun. ACM, 21, No.2, pp.120-126, 1978.
[4] Brauce Schneier. Applied Cryptography:Protocols,Algorithms, and Source Code in C. John Wiley & Sons, Inc., seconded edition, 1996.
[5] Toshiki Habutsu, Yoshifumi Nishio, Iwao Sasase, and Shinsaku Mori. A secret key cryptosystem by iteration a chaotic map . Advances in Cryptology: Eurocrypt'91, pp. 127-140, 1991.
[6] S. C. Phatak and S. Suresh Rao. Logistic map: A possible random-number generator. Phys. Rev. E, 51, No.4, pp. 3670-3678, 1995.
[7] M. Andrecut. Logistic map as a random number generator. Int. J. of Morden Phys. B, 12, No.9, pp. 921-930, 1998.
[8] L.M. Pecora and T.L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., 64, No.8, pp. 821-824, 1990.
[9] Y.-Y. Chen. Masking messages in chaos. Europhysics Letters, 34, No.4, pp. 245-250, 1996.
[10] Rong He and P.G.Vaidya. Implementation of chaotic cryptography with chaotic synchronization. Phys. Rev. E, 57, No.2, pp. 1532-1535, 1998.
[11] F. James. A review of pseudorandom number generators. Computer Phys. Commun., 60, pp. 329-344, 1990.
[12] D.E. Knuth. Deciphering a linear congruential encryption. IEEE Trans. on inform. Theory, IT-31, No.1, pp. 49-52, 1985.
[13] John Boyar Plumstead. Inferring sequences produced by pseudo-random number generators. PhD thesis, University of California, Berkeley, 1983.
[14] Security Requirements for Cryptographic Modules, FIPS PUB 140-1, Federal Information Processing Standards Publication. 1994.
[15] Edward N. Lorenz. Deterministic nonperiodic ow. J. Atoms. Sci., 20, No.2, pp. 130-141, 1963.
[16] Barry Saltzman. Finite amplitude free convection as an initial value problem. J. Atoms. Sci., 19, No.4, pp. 329-341, 1962.
[17] Gabriel Perez and Hilda A. Cerdeira. Extracting messages masked by chaos. Phys. Rev. Lett., 74, No.11, pp. 1970-1973, 1995.
[18] Chiang Kao and J.Y.Wong. Technical note:Several extensively tested random number generators. Computers Ops Res., 21, No.9, pp. 1035- 1039, 1994.
[19] L.Boney, A.H.Tewk, and K.N.Hamdy. Digital watermarks for audio signals. IEEE Proceedings of Multimedia, pp. 473-480, 1996.
[20] D.E. Knuth. The Art of Computer Programming:volume 2, Seminumberical Algorithms. Addison-Wesley, third edition, 1997.
[21] E. Ott. Chaos in Dynamical Systems. Cambridge Univ. Press, 1993.
[22] Colin Sparrow. Lorenz Equations:Bifurcations, Chaos, and Strange Attractors. Springer-Verlag, 1982.
[23] Steven H. Strogatz. Nonlinear Dynamics and Chaos:with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, 1994.
[24] Hugh L. Montgomery, Ivan Niven, and Herbert S. Zuckerman. An Introduction to The Theory of Numbers. John Wiley & Sons, Inc., fifth edition, 1991.
[25] R.A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag Berlin, Heidelberg, 1986.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔